scholarly journals Super Residual Circulation: a new perspective on ocean vertical heat transport

Author(s):  
Abhishek Savita ◽  
Jan D. Zika ◽  
Catia M. Domingues ◽  
Simon J. Marsland ◽  
Gwyn Dafydd Evans ◽  
...  

AbstractOcean circulation and mixing regulate Earth’s climate by moving heat vertically within the ocean. We present a new formalism to diagnose the role of ocean circulation and diabatic processes in setting vertical heat transport in ocean models. In this formalism we use temperature tendencies, rather than explicit vertical velocities to diagnose circulation. Using quasi-steady state simulations from the Australian Community Climate and Earth-System Simulator Ocean Model (ACCESS-OM2), we diagnose a diathermal overturning circulation in temperature-depth space. Furthermore, projection of tendencies due to diabatic processes onto this coordinate permits us to represent these as apparent overturning circulations. Our framework permits us to extend the concept of Super-Residual Transport (SRT), which combines mean and eddy advection terms with subgridscale isopycnal mixing due to mesoscale eddies, but excludes small-scale three dimensional turbulent mixing effect, to construct a new overturning circulation – the ‘Super Residual Circulation’ (SRC).We find that in the coarse resolution version of ACCESS-OM2 (nominally 1° horizontal resolution) the SRC is dominated by an ~11 Sv circulation which transports heat upward. The SRC’s upward heat transport is ~2 times larger in a finer horizontal resolution (0.1°) version of ACCESS, suggesting a differing balance of super-residual and parameterized small-scale processes may emerge as eddies are resolved. Our analysis adds new insight into super-residual processes, as the SRC elucidates the pathways in temperature and depth space along which watermass transformation occurs.

2007 ◽  
Vol 37 (8) ◽  
pp. 2038-2052 ◽  
Author(s):  
J. Nycander ◽  
J. Nilsson ◽  
K. Döös ◽  
G. Broström

Abstract Calculating a streamfunction as function of depth and density is proposed as a new way of analyzing the thermodynamic character of the overturning circulation in the global ocean. The sign of an overturning cell in this streamfunction directly shows whether it is driven mechanically by large-scale wind stress or thermally by heat conduction and small-scale mixing. It is also shown that the integral of this streamfunction gives the thermodynamic work performed by the fluid. The analysis is also valid for the Boussinesq equations, although formally there is no thermodynamic work in an incompressible fluid. The proposed method is applied both to an idealized coarse-resolution three-dimensional numerical ocean model, and to the realistic high-resolution Ocean Circulation and Climate Advanced Model (OCCAM). It is shown that the overturning circulation in OCCAM between the 200- and 1000-m depth is dominated by a thermally indirect cell of 24 Sverdrups (1 Sv ≡ 106 m3 s−1), forced by Ekman pumping. In the densest and deepest waters there is a thermally direct cell of 18 Sv, which requires a forcing by around 100 GW of parameterized small-scale mixing.


2017 ◽  
Author(s):  
Jaromir Jakacki ◽  
Sebastian Meler

Abstract. A three dimensional, regional coupled ice-ocean model based on the open-source Community Earth System Model has been developed and implemented for the Baltic Sea. The model consists of 66 vertical levels and has a horizontal resolution of approx. 2.3 km. The paper focuses on sea ice component results but the main changes have been introduced in the ocean part of the coupled model. The hydrodynamic part, being one of the most important components, has been also presented and validated. The ice model results were validated against the radar and satellite data, and the method of validation based on probability was introduced. In the last two decades satellite and model results show an increase in the ice extent over the whole Baltic Sea, which is an evidence of a negative trend in air temperature in recent decades and increasing of winter discharge from the catchment area.


2007 ◽  
Vol 64 (10) ◽  
pp. 3542-3561 ◽  
Author(s):  
Oliver Fuhrer ◽  
Christoph Schär

Abstract Shallow orographic convection embedded in an unstable cap cloud can organize into convective bands. Previous research has highlighted the important role of small-amplitude topographic variations in triggering and organizing banded convection. Here, the underlying dynamical mechanisms are systematically investigated by conducting three-dimensional simulations of moist flows past a two-dimensional mountain ridge using a cloud-resolving numerical model. Most simulations address a sheared environment to account for the observed wind profiles. Results confirm that small-amplitude topographic variations can enhance the development of embedded convection and anchor quasi-stationary convective bands to a fixed location in space. The resulting precipitation patterns exhibit tremendous spatial variability, since regions receiving heavy rainfall can be only kilometers away from regions receiving little or no rain. In addition, the presence of banded convection has important repercussions on the area-mean precipitation amounts. For the experimental setup here, the gravity wave response to small-amplitude topographic variations close to the upstream edge of the cap cloud (which is forced by the larger-scale topography) is found to be the dominant triggering mechanism. Small-scale variations in the underlying topography are found to force the location and spacing of convective bands over a wide range of scales. Further, a self-sufficient mode of unsteady banded convection is investigated that does not dependent on external perturbations and is able to propagate against the mean flow. Finally, the sensitivity of model simulations of banded convection with respect to horizontal computational resolution is investigated. Consistent with predictions from a linear stability analysis, convective bands of increasingly smaller scales are favored as the horizontal resolution is increased. However, small-amplitude topographic roughness is found to trigger banded convection and to control the spacing and location of the resulting bands. Thereby, the robustness of numerical simulations with respect to an increase in horizontal resolution is increased in the presence of topographic variations.


2018 ◽  
Vol 12 (2) ◽  
pp. 453-476 ◽  
Author(s):  
Rachael D. Mueller ◽  
Tore Hattermann ◽  
Susan L. Howard ◽  
Laurie Padman

Abstract. Recent modeling studies of ocean circulation in the southern Weddell Sea, Antarctica, project an increase over this century of ocean heat into the cavity beneath Filchner–Ronne Ice Shelf (FRIS). This increase in ocean heat would lead to more basal melting and a modification of the FRIS ice draft. The corresponding change in cavity shape will affect advective pathways and the spatial distribution of tidal currents, which play important roles in basal melting under FRIS. These feedbacks between heat flux, basal melting, and tides will affect the evolution of FRIS under the influence of a changing climate. We explore these feedbacks with a three-dimensional ocean model of the southern Weddell Sea that is forced by thermodynamic exchange beneath the ice shelf and tides along the open boundaries. Our results show regionally dependent feedbacks that, in some areas, substantially modify the melt rates near the grounding lines of buttressed ice streams that flow into FRIS. These feedbacks are introduced by variations in meltwater production as well as the circulation of this meltwater within the FRIS cavity; they are influenced locally by sensitivity of tidal currents to water column thickness (wct) and non-locally by changes in circulation pathways that transport an integrated history of mixing and meltwater entrainment along flow paths. Our results highlight the importance of including explicit tidal forcing in models of future mass loss from FRIS and from the adjacent grounded ice sheet as individual ice-stream grounding zones experience different responses to warming of the ocean inflow.


2014 ◽  
Vol 27 (10) ◽  
pp. 3551-3564 ◽  
Author(s):  
Florian Sévellec ◽  
Alexey V. Fedorov

Abstract A salient feature of paleorecords of the last glacial interval in the North Atlantic is pronounced millennial variability, commonly known as Dansgaard–Oeschger events. It is believed that these events are related to variations in the Atlantic meridional overturning circulation and heat transport. Here, the authors formulate a new low-order model, based on the Howard–Malkus loop representation of ocean circulation, capable of reproducing millennial variability and its chaotic dynamics realistically. It is shown that even in this chaotic model changes in the state of the meridional overturning circulation are predictable. Accordingly, the authors define two predictive indices which give accurate predictions for the time the circulation should remain in the on phase and then stay in the subsequent off phase. These indices depend mainly on ocean stratification and describe the linear growth of small perturbations in the system. Thus, monitoring particular indices of the ocean state could help predict a potential shutdown of the overturning circulation.


2020 ◽  
Author(s):  
Yurui Zhang ◽  
Thierry Huck ◽  
Camille Lique ◽  
Yannick Donnadieu ◽  
Jean-Baptiste Ladant ◽  
...  

Abstract. The early Eocene (~ 55 Ma) is the warmest period, and most likely characterized by the highest atmospheric CO2 concentrations, of the Cenozoic era. Here, we analyze simulations of the early Eocene performed with the IPSL-CM5A2 coupled climate model set up with paleogeographic reconstructions of this period from the DeepMIP project, with different levels of atmospheric CO2, and compare them with simulations of the modern conditions. This allows us to explore the changes of the ocean circulation and the resulting ocean meridional heat transport. At a CO2 level of 840 ppm, the Early Eocene simulation is characterized by a strong abyssal overturning circulation in the Southern Hemisphere (40 Sv at 60º S), fed by deep water formation in the three sectors of the Southern Ocean. Deep convection in the Southern Ocean is favored by the closed Drake and Tasmanian passages, which provide western boundaries for the build-up of strong subpolar gyres in the Weddell and Ross seas, in the middle of which convection develops. The strong overturning circulation, associated with the subpolar gyres, sustains the poleward advection of saline subtropical water to the convective region in the Southern Ocean, maintaining deep-water formation. This salt-advection feedback mechanism works similarly in the present-day North Atlantic overturning circulation. The strong abyssal overturning circulation in the 55 Ma simulations primarily results in an enhanced poleward ocean heat transport by 0.3–0.7 PW in the Southern Hemisphere compared to modern conditions, reaching 1.7 PW southward at 20° S, and contributing to maintain the Southern Ocean and Antarctica warm in the Eocene. Simulations with different atmospheric CO2 levels show that the ocean circulation and heat transport are relatively insensitive to CO2-doubling.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1412
Author(s):  
Ivan Kuznetsov ◽  
Alexey Androsov ◽  
Vera Fofonova ◽  
Sergey Danilov ◽  
Natalja Rakowsky ◽  
...  

A newly developed coastal model, FESOM-C, based on three-dimensional unstructured meshes and finite volume, is applied to simulate the dynamics of the southeastern North Sea. Variable horizontal resolution enables coarse meshes in the open sea with refined meshes in shallow areas including the Wadden Sea and estuaries to resolve important small-scale processes such as wetting and drying, sub-mesoscale eddies, and the dynamics of steep coastal fronts. Model results for a simulation of the period from January 2010 to December 2014 agree reasonably well with data from numerous regional autonomous observation stations with high temporal and spatial resolutions, as well as with data from FerryBoxes and glider expeditions. Analyzing numerical solution convergence on meshes of different horizontal resolutions allows us to identify areas where high mesh resolution (wetting and drying zones and shallow areas) and low mesh resolution (open boundary, open sea, and deep regions) are optimal for numerical simulations.


2020 ◽  
Author(s):  
Dorotea Iovino ◽  
Malcolm J. Roberts ◽  
Laura C. Jackson ◽  
Christopher D. Roberts ◽  
Virna Meccia ◽  
...  

<p>The Atlantic Meridional Overturning Circulation (AMOC) is a key component of the three-dimensional ocean circulation that transports warm and salty water northward, and exports cold and dense water from the Arctic southward.</p><p>The simulated AMOC in Coupled Model Intercomparison Project models (both coupled and ocean-only) has been studied extensively. However, correctly simulating the AMOC with these models remains a challenge for the climate modelling community. One model aspect that can affect the AMOC representation is the model resolution (i.e. grid spacing).</p><p>Here, we examine key aspects of the North Atlantic Ocean circulation using a multi-model, multi-resolution ensemble based on the CMIP6 HighResMIP coupled experiments. The AMOC and associated heat transport tend to become stronger as model resolution increases, particularly when the ocean resolution changes from non-eddying to eddy-present and eddy-rich. However, the circulation remains too shallow compared to observations for most models, and this, together with temperature biases, cause the northward heat transport to be too low for a given overturning strength.</p><p>In the period 2015-2050, the overturning circulation tends to decline more rapidly in the higher resolution models by more than 20% compared to the control state, which is related to both themean state and to the subpolar gyre contribution to deep water formation. The main part of the decline comes from the Florida Current component of the circulation.</p>


2018 ◽  
Vol 11 (4) ◽  
pp. 1257-1292 ◽  
Author(s):  
Kaitlin A. Naughten ◽  
Katrin J. Meissner ◽  
Benjamin K. Galton-Fenzi ◽  
Matthew H. England ◽  
Ralph Timmermann ◽  
...  

Abstract. An increasing number of Southern Ocean models now include Antarctic ice-shelf cavities, and simulate thermodynamics at the ice-shelf/ocean interface. This adds another level of complexity to Southern Ocean simulations, as ice shelves interact directly with the ocean and indirectly with sea ice. Here, we present the first model intercomparison and evaluation of present-day ocean/sea-ice/ice-shelf interactions, as simulated by two models: a circumpolar Antarctic configuration of MetROMS (ROMS: Regional Ocean Modelling System coupled to CICE: Community Ice CodE) and the global model FESOM (Finite Element Sea-ice Ocean Model), where the latter is run at two different levels of horizontal resolution. From a circumpolar Antarctic perspective, we compare and evaluate simulated ice-shelf basal melting and sub-ice-shelf circulation, as well as sea-ice properties and Southern Ocean water mass characteristics as they influence the sub-ice-shelf processes. Despite their differing numerical methods, the two models produce broadly similar results and share similar biases in many cases. Both models reproduce many key features of observations but struggle to reproduce others, such as the high melt rates observed in the small warm-cavity ice shelves of the Amundsen and Bellingshausen seas. Several differences in model design show a particular influence on the simulations. For example, FESOM's greater topographic smoothing can alter the geometry of some ice-shelf cavities enough to affect their melt rates; this improves at higher resolution, since less smoothing is required. In the interior Southern Ocean, the vertical coordinate system affects the degree of water mass erosion due to spurious diapycnal mixing, with MetROMS' terrain-following coordinate leading to more erosion than FESOM's z coordinate. Finally, increased horizontal resolution in FESOM leads to higher basal melt rates for small ice shelves, through a combination of stronger circulation and small-scale intrusions of warm water from offshore.


2016 ◽  
Vol 809 ◽  
pp. 135-167 ◽  
Author(s):  
J. G. Chen ◽  
Y. Zhou ◽  
T. M. Zhou ◽  
R. A. Antonia

The transport of momentum and heat in the turbulent intermediate wake of a circular cylinder is inherently three-dimensional (3-D). This work aims to gain new insight into the 3-D vorticity structure, momentum and heat transport in this flow. All three components of the velocity and vorticity vectors, along with the fluctuating temperature, are measured simultaneously, at nominally the same point in the flow, with a probe consisting of four X-wires and four cold wires. Measurements are made in the ($x$,$y$) or mean shear plane at$x/d=10$, 20 and 40 at a Reynolds number of$2.5\times 10^{3}$based on the cylinder diameter$d$and the free-stream velocity. A phase-averaging technique is developed to separate the large-scale coherent structures from the remainder of the flow. It is found that the effects of vorticity on heat transport at$x/d=10$and$x/d=20{-}40$are distinctly different. At$x/d=10$, both spanwise and streamwise vorticity components account significantly for the heat flux. At$x/d=20$and 40, the spanwise vortex rollers play a major role in inducing the coherent components of the heat flux vector, while the ribs are responsible for the small-scale heat diffusion out of the spanwise vortex rollers. The present data indicate that, if the spanwise-velocity-related terms are ignored, the estimated values of the production can have errors of approximately 22 % and 13 % respectively for the turbulent energy and temperature variance at$x/d=40$, and the errors are expected to further increase downstream. A conceptual model summarizing the 3-D features of the heat and momentum transports at$x/d=10$is proposed. Compared with the previous two-dimensional model of Matsumura & Antonia (J. Fluid Mech., vol. 250, 1993, pp. 651–668) or MA, the new model provides a more detailed description of the role the rib-like structures undertake in transporting heat and momentum, and also underlines the importance of the upstream half of the spanwise vortex rollers, instead of only one quadrant of these rollers, as in the MA model, in diffusing heat out of the vortex.


Sign in / Sign up

Export Citation Format

Share Document