scholarly journals Intermediate-Depth Circulation of the Indian and South Pacific Oceans Measured by Autonomous Floats

2005 ◽  
Vol 35 (5) ◽  
pp. 683-707 ◽  
Author(s):  
Russ E. Davis

Abstract As part of the World Ocean Circulation Experiment, 306 autonomous floats were deployed in the tropical and South Pacific Ocean and 228 were deployed in the Indian Ocean to observe the basinwide circulation near 900-m depth. Mean velocities, seasonal variability, and lateral eddy diffusivity from the resultant 2583 float-years of data are presented. Area averages, local function fits, and a novel application of objective mapping are used to estimate the mean circulation. Patterns of mean circulation resemble those at the surface in both basins. Well-developed subtropical gyres, twice as strong in the Indian Ocean as in the Pacific, feed western boundary currents. Tropical gyres are separated by eastward flow along the equator in both hemispheres of both basins, although the Indian subcontinent splits the north Indian tropical gyre. The Antarctic Circumpolar Current (ACC) and west wind drifts are prominent in both basins, generally tending slightly southward but deviating to the north behind the Del Cano, Kerguelen, and Campbell Plateaus and, of course, South America. Remarkably, the eastern boundaries of the southern subtropical gyres in all three basins apparently occur in the ocean interior, away from land. The Indian Ocean’s subtropical gyre, and perhaps part of the South Atlantic’s, reaches east to a retroflection just upstream of the Campbell Plateau south of New Zealand. Seasonal variability at 900 m is focused around the equator with weaker variability found near certain bathymetric features. There is a remarkable agreement between the observed seasonable variability and that predicted by the Jet Propulsion Laboratory (JPL)–Estimating the Circulation and Climate of the Ocean (ECCO) data-assimilating numerical model. Aside from seasonal effects, eddy variability is greatest along the equator, in tropical and subtropical western basins, and along the ACC. Integrals of velocity across regional passages (Tasman Sea, Mozambique Channel) provide useful reference for hydrographic analyses of transport. Across whole ocean basins, however, the uncertainty associated with the appropriate continuity relation for horizontal flow (e.g., geostrophy vs nondivergence) is comparable to the mean flow.

2007 ◽  
Vol 20 (13) ◽  
pp. 2994-3017 ◽  
Author(s):  
Vinu K. Valsala ◽  
Motoyoshi Ikeda

Abstract The 3D pathways of the Indonesian Throughflow (ITF) in the Indian Ocean are identified using an OGCM, with a combined set of tools: 1) Lagrangian particle trajectories, 2) passive tracers, and 3) active tracers (temperature and salinity). Each of these tools has its own advantages and limitations to represent the watermass pathways. The Lagrangian particles, without horizontal and vertical mixing, suggest that at the entrance region the surface ITF subducts along the northwestern coast of Australia and then travels across the Indian Ocean along the thermocline depths. The subsurface ITF more directly departs westward and crosses the Indian Ocean. Using the passive tracers, which are mixed vertically under convection as well as horizontally due to diffusion, the ITF is shown to undergo vigorous mixing as soon as it enters the Indian Ocean and modifies its upper temperature–salinity (T–S) characteristics. Thus, the surface and subsurface ITF watermasses lose their identities. Upon reaching the western boundary, the ITF reroutes into three distinct depth ranges, owing to the seasonal reversal of the Somali region: route 1—across the Indian Ocean just to the south of the equator (200–300 m); route 2—across the Indian Ocean to the north of the equator (100–200 m); and route 3—upwells in the Somali region and spreads all over the surface of the northern Indian Ocean. The seasonality of the Somali Current is crucial to spread the ITF along route 3 during the summer monsoon (April–October) and route 2 during the winter monsoon (November–March). The basinwide spreading is responsible for a long residence time of the ITF in the Indian Ocean to be at least 20 yr. The effects of the ITF on the temperature and salinity are mainly accompanied with the major pathways. However, indirect effects are visible in a few spots; that is, the warm and saline feature is produced in the subsurface off the southwestern coast of Australia around 30°S caused by the eastward surface current, which is under the thermal wind relationship owing to the warm and fresh ITF component. This component also enhances vertical convection and warms the surface around 40°S. The Arabian Sea high salinity water is produced extensively with the effects of the Somali upwelling, which is originally strengthened by the fresh and warm ITF.


2017 ◽  
Vol 47 (5) ◽  
pp. 979-998 ◽  
Author(s):  
Gengxin Chen ◽  
Weiqing Han ◽  
Yuanlong Li ◽  
Michael J. McPhaden ◽  
Ju Chen ◽  
...  

AbstractThis paper reports on strong, intraseasonal, upper-ocean meridional currents observed in the Indian Ocean between the Bay of Bengal (BOB) and the equator and elucidates the underlying physical processes responsible for them. In situ measurements from a subsurface mooring at 5°N, 90.5°E reveal strong intraseasonal variability of the meridional current with an amplitude of ~0.4 m s−1 and a typical period of 30–50 days in the upper 150 m, which by far exceeds the magnitudes of the mean flow and seasonal cycle. Such prominent intraseasonal variability is, however, not seen in zonal current at the same location. Further analysis suggests that the observed intraseasonal flows are closely associated with westward-propagating eddylike sea surface height anomalies (SSHAs) along 5°N. The eddylike SSHAs are largely manifestations of symmetric Rossby waves, which result primarily from intraseasonal wind stress forcing in the equatorial waveguide and reflection of the equatorial Kelvin waves at the eastern boundary. Since the wave signals are generally symmetric about the equator, similar variability is also seen at 5°S but with weaker intensity because of the inclined coastline at the eastern boundary. The Rossby waves propagate westward, causing pronounced intraseasonal SSHA and meridional current in the upper ocean across the entire southern BOB between 84° and 94°E. They greatly weaken in the western Indian Basin, but zonal currents near the equator remain relatively strong.


2018 ◽  
Vol 48 (2) ◽  
pp. 413-434 ◽  
Author(s):  
Motoki Nagura ◽  
Michael J. McPhaden

AbstractThe number of in situ observations in the Indian Ocean has dramatically increased over the past 15 years thanks to the implementation of the Argo profiling float program. This study estimates the mean circulation in the Indian Ocean using hydrographic observations obtained from both Argo and conductivity–temperature–depth (CTD) observations. Absolute velocity at the Argo float parking depth is used so there is no need to assume a level of no motion. Results reveal previously unknown features in addition to well-known currents and water masses. Some newly identified features include the lack of an interior pathway to the equator from the southern Indian Ocean in the pycnocline, indicating that water parcels must transit through the western boundary to reach the equator. High potential vorticity (PV) intrudes from the western coast of Australia in the depth range of the Subantarctic Mode Water, which leads to a structure similar to a PV barrier. The subtropical anticyclonic gyre retreats poleward with depth, as happens in the subtropical Atlantic and Pacific. An eastward flow was found in the eastern basin along 15°S at the depth of the Antarctic Intermediate Water—a feature expected from property distributions but never before detected in velocity estimates. Meridional mass transport indicates about 10 Sv (1 Sv ≡ 106 m3 s−1) southward flow at 6°S and 18 Sv northward flow at 20°S, which results in meridional convergence of currents and thermocline depression at about 16°–20°S. These estimated absolute velocities agree well with those of an ocean reanalysis, which lends credibility to the strictly databased analysis.


2019 ◽  
Vol 49 (3) ◽  
pp. 789-810 ◽  
Author(s):  
Xiaomei Yan ◽  
Dujuan Kang ◽  
Enrique N. Curchitser ◽  
Chongguang Pang

AbstractThe energetics of eddy–mean flow interactions along two western boundary currents of the North Pacific, the Kuroshio and Ryukyu Currents, are systematically investigated using 22 years of numerical data from the Ocean General Circulation Model for the Earth Simulator (OFES). For the time-mean and time-varying flow fields, all the energy components and conversions exhibit inhomogeneous spatial distributions. In the two currents, complex cross-stream and along-stream variations are seen in the eddy–mean flow energy conversions. East of Taiwan, the kinetic energy is mainly transferred from the mean flow to the eddy field through barotropic instability, whereas the baroclinic energy conversions form a meridional dipole structure caused by the topographic constraint. In the northern area, particularly, the eddy field drains 2.25 × 108 W of kinetic energy and releases 2.82 × 108 W of available potential energy when interacting with the mean flow, indicating that mesoscale eddies impinging on the Kuroshio decay with baroclinic inverse energy cascades. In the Ryukyu Current, inverse energy conversions from the eddy field to the mean flow also dominate the power transfer in the subsurface layer. The eddy field transfers 0.16 × 108 W of kinetic energy and 1.89 × 108 W of available potential energy to the mean flow, suggesting that meososcale eddies play an important role in maintaining the velocity and hydrographic structure of the current. In other areas, both barotropic and baroclinic instabilities contribute to the generation of eddy kinetic energy with the latter one providing more than 3 times as much power as the former one.


2020 ◽  
Author(s):  
William K. Dewar ◽  
Quentin Jamet ◽  
Bruno Deremble ◽  
Nicolas Wienders

<p>The flow of energy in the wind-driven circulation is examined in a <br>combined theoretical and numerical study. Based on a multiple scales <br>analysis of the ocean interior, we find the mesoscale field is strongly <br>affected by the ventilated thermocline, but no feed back from the eddies <br>to the large scale is found.  We then analyze the western boundary <br>region arguing that the associated currents divide between coastal jets, <br>which conserve mean energy, and open ocean, separated jet extensions<br>where the mesoscale is energized by the mean field.   It is the <br>separated jet zone where the primary loss of general circulation energy <br>to the mesoscale occurs.  Connections to the `Thickness Weighted <br>Average' form of the primitive equations are made which support the <br>differing roles of the eddies in these regions.  These ideas are then <br>tested by an analysis of a regional primitive equation 1/12-degree <br>numerical model of the North Atlantic. The predictions of the theory are <br>generally supported by the numerical results.  The one exception is that <br>topographic irregularities in the coastal jet spawn eddies, although <br>they contribute modestly to the energy budget.  We therefore conclude <br>the primary sink of wind input into the mean circulation is in the <br>separated jet, and not the interior.  The analysis also shows<br>wind forcing is much smaller than the interior energy fluxes. Thus, the <br>general circulation is characterized as recirculating energy in the <br>manner of a Fofonoff gyre.</p>


2021 ◽  
Vol 13 (5) ◽  
pp. 1013
Author(s):  
Kuo-Wei Yen ◽  
Chia-Hsiang Chen

Remote sensing (RS) technology, which can facilitate the sustainable management and development of fisheries, is easily accessible and exhibits high performance. It only requires the collection of sufficient information, establishment of databases and input of human and capital resources for analysis. However, many countries are unable to effectively ensure the sustainable development of marine fisheries due to technological limitations. The main challenge is the gap in the conditions for sustainable development between developed and developing countries. Therefore, this study applied the Web of Science database and geographic information systems to analyze the gaps in fisheries science in various countries over the past 10 years. Most studies have been conducted in the offshore marine areas of the northeastern United States of America. In addition, all research hotspots were located in the Northern Hemisphere, indicating a lack of relevant studies from the Southern Hemisphere. This study also found that research hotspots of satellite RS applications in fisheries were mainly conducted in (1) the northeastern sea area in the United States, (2) the high seas area of the North Atlantic Ocean, (3) the surrounding sea areas of France, Spain and Portugal, (4) the surrounding areas of the Indian Ocean and (5) the East China Sea, Yellow Sea and Bohai Bay sea areas to the north of Taiwan. A comparison of publications examining the three major oceans indicated that the Atlantic Ocean was the most extensively studied in terms of RS applications in fisheries, followed by the Indian Ocean, while the Pacific Ocean was less studied than the aforementioned two regions. In addition, all research hotspots were located in the Northern Hemisphere, indicating a lack of relevant studies from the Southern Hemisphere. The Atlantic Ocean and the Indian Ocean have been the subjects of many local in-depth studies; in the Pacific Ocean, the coastal areas have been abundantly investigated, while offshore local areas have only been sporadically addressed. Collaboration and partnership constitute an efficient approach for transferring skills and technology across countries. For the achievement of the sustainable development goals (SDGs) by 2030, research networks can be expanded to mitigate the research gaps and improve the sustainability of marine fisheries resources.


Radiocarbon ◽  
1980 ◽  
Vol 22 (3) ◽  
pp. 684-692 ◽  
Author(s):  
Georgette Delibrias

14C measurements were carried out on sea water samples collected in 1973, in the Indian ocean. The results obtained for 9 vertical profiles between 27° S and 48°S are presented. In surface water, the bomb 14C content is maximum at middle latitudes. A time lag relative to the north hemisphere bomb 14C delivery is apparent. In the more southern latitudes, 14C content remains very low.


2015 ◽  
Vol 45 (9) ◽  
pp. 2294-2314 ◽  
Author(s):  
Shane Elipot ◽  
Lisa M. Beal

AbstractThe Agulhas Current intermittently undergoes dramatic offshore excursions from its mean path because of the downstream passage of mesoscale solitary meanders or Natal pulses. New observations and analyses are presented of the variability of the current and its meanders using mooring observations from the Agulhas Current Time-Series Experiment (ACT) near 34°S. Using a new rotary EOF method, mesoscale meanders and smaller-scale meanders are differentiated and each captured in a single mode of variance. During mesoscale meanders, an onshore cyclonic circulation and an offshore anticyclonic circulation act together to displace the jet offshore, leading to sudden and strong positive conversion of kinetic energy from the mean flow to the meander via nonlinear interactions. Smaller meanders are principally represented by a single cyclonic circulation spanning the entire jet that acts to displace the jet without extracting kinetic energy from the mean flow. Synthesizing in situ observations with altimeter data leads to an account of the number of mesoscale meanders at 34°S: 1.6 yr−1 on average, in agreement with a recent analysis by Rouault and Penven (2011) and significantly less than previously understood. The links between meanders and the arrival of Mozambique Channel eddies or Madagascar dipoles at the western boundary upstream are found to be robust in the 20-yr altimeter record. Yet, only a small fraction of anomalies arriving at the western boundary result in meanders, and of those, two-thirds can be related to ring shedding. Most Agulhas rings are shed independently of meanders.


1922 ◽  
Vol 59 (5) ◽  
pp. 200-212
Author(s):  
Robert R. Walls

Portuguese Nyasaland is the name given to the most northern part of Portuguese East Africa, lying between Lake Nyasa and the Indian Ocean. It is separated from the Tanganyika territory in the north by the River Rovuma and from the Portuguese province of Mozambique in the south by the River Lurio. The territory measures about 400 miles from east to west and 200 miles from north to south and has an area of nearly 90,000 square miles. This territory is now perhaps the least known part of the once Dark Continent, but while the writer was actually engaged in the exploration of this country in 1920–1, the Naval Intelligence Division of the British Admiralty published two handbooks, the Manual of Portuguese East Africa and the Handbook of Portuguese Nyasaland, which with their extensive bibliographies contained practically everything that was known of that country up to that date (1920). These handbooks make it unnecessary in this paper to give detailed accounts of the work of previous explorers.


1876 ◽  
Vol 9 (1) ◽  
pp. 147-154
Author(s):  
A. H. Schindler

The part of Belúchistán now under Persian rule is bounded upon the north by Seistán, upon the east by Panjgúr and Kej, upon the south by the Indian Ocean, and upon the west by Núrámshír, Rúdbár, and the Báshákerd mountains.This country enjoys a variety of climates; almost unbearable heat exists on the Mekrán coast, we find a temperate climate on the hill slopes and on the slightly raised plains as at Duzek and Bampúr, and a cool climate in the mountainous districts Serhad and Bazmán. The heat at Jálq is said to be so intense in summer that the gazelles lie down exhausted in the plains, and let themselves be taken by the people without any trouble.


Sign in / Sign up

Export Citation Format

Share Document