scholarly journals Pathways and Effects of the Indonesian Throughflow Water in the Indian Ocean Using Particle Trajectory and Tracers in an OGCM

2007 ◽  
Vol 20 (13) ◽  
pp. 2994-3017 ◽  
Author(s):  
Vinu K. Valsala ◽  
Motoyoshi Ikeda

Abstract The 3D pathways of the Indonesian Throughflow (ITF) in the Indian Ocean are identified using an OGCM, with a combined set of tools: 1) Lagrangian particle trajectories, 2) passive tracers, and 3) active tracers (temperature and salinity). Each of these tools has its own advantages and limitations to represent the watermass pathways. The Lagrangian particles, without horizontal and vertical mixing, suggest that at the entrance region the surface ITF subducts along the northwestern coast of Australia and then travels across the Indian Ocean along the thermocline depths. The subsurface ITF more directly departs westward and crosses the Indian Ocean. Using the passive tracers, which are mixed vertically under convection as well as horizontally due to diffusion, the ITF is shown to undergo vigorous mixing as soon as it enters the Indian Ocean and modifies its upper temperature–salinity (T–S) characteristics. Thus, the surface and subsurface ITF watermasses lose their identities. Upon reaching the western boundary, the ITF reroutes into three distinct depth ranges, owing to the seasonal reversal of the Somali region: route 1—across the Indian Ocean just to the south of the equator (200–300 m); route 2—across the Indian Ocean to the north of the equator (100–200 m); and route 3—upwells in the Somali region and spreads all over the surface of the northern Indian Ocean. The seasonality of the Somali Current is crucial to spread the ITF along route 3 during the summer monsoon (April–October) and route 2 during the winter monsoon (November–March). The basinwide spreading is responsible for a long residence time of the ITF in the Indian Ocean to be at least 20 yr. The effects of the ITF on the temperature and salinity are mainly accompanied with the major pathways. However, indirect effects are visible in a few spots; that is, the warm and saline feature is produced in the subsurface off the southwestern coast of Australia around 30°S caused by the eastward surface current, which is under the thermal wind relationship owing to the warm and fresh ITF component. This component also enhances vertical convection and warms the surface around 40°S. The Arabian Sea high salinity water is produced extensively with the effects of the Somali upwelling, which is originally strengthened by the fresh and warm ITF.

2007 ◽  
Vol 4 (2) ◽  
pp. 325-370 ◽  
Author(s):  
U. W. Humphries ◽  
D. J. Webb

Abstract. The Indonesian Throughflow is analysed in two runs of the OCCAM 1/4 degree global ocean model, one using monthly climatological winds and one using ECMWF analysed six-hourly winds for the period 1993 to 1998. The long-term model throughflow agrees with observations and the value predicted by Godfrey's Island Rule. The Island Rule has some skill in predicting the annual signal each year but is poor at predicting year to year and shorter term variations in the total flow especially in El Nino years. The spectra of transports in individual passages show significant differences between those connecting the region to the Pacific Ocean and those connecting with the Indian Ocean. This implies that different sets of waves are involved in the two regions. Vertical profiles of transport are in reasonable agreement with observations but the model overestimates the near surface transport through the Lombok Strait and the dense overflow from the Pacific through the Lifamatola Strait into the deep Banda Sea. In both cases the crude representation of the passages by the model appears responsible. In the north the model shows, as expected, that the largest transport is via the Makassar Strait. However this is less than expected and instead there is significant flow via the Halmahera Sea. If Godfrey's Island Rule is correct and the throughflow is forced by the northward flow between Australia and South America, then the Halmahers Sea route should be important. It is the most southerly route around New Guinea to the Indian Ocean and there is no apparent reason why the flow should go further north in order to pass through the Makassar Strait. The model result thus raises the question of why in reality the Makassar Strait route appears to dominate the throughflow.


Ocean Science ◽  
2008 ◽  
Vol 4 (3) ◽  
pp. 183-198 ◽  
Author(s):  
U. W. Humphries ◽  
D. J. Webb

Abstract. The Indonesian Throughflow is analysed in two runs of the OCCAM 1/4 degree global ocean model, one using monthly climatological winds and one using ECMWF analysed six-hourly winds for the period 1993 to 1998. The long-term model throughflow agrees with observations and the value predicted by Godfrey's Island Rule. The Island Rule has some skill in predicting the annual signal each year but is poor at predicting year to year and shorter term variations in the total flow, especially in El Niño years. The spectra of transports in individual passages show significant differences between those connecting the region to the Pacific Ocean and those connecting with the Indian Ocean. On investigation we found that changes in the northern transports were strongly correlated with changes in the position of currents in the Celebes Sea and off Halmahera. Vertical profiles of transport are in reasonable agreement with observations but the model overestimates the near surface transport through the Lombok Strait and the dense overflow from the Pacific through the Lifamatola Strait into the deep Banda Sea. In both cases the crude representation of the passages by the model appears responsible. In the north the model shows, as expected, that the largest transport is via the Makassar Strait. However this is less than expected and instead there is significant flow via the Halmahera Sea. If Godfrey's Island Rule is correct and the throughflow is forced by the northward flow between Australia and South America, then the Halmahers Sea route should be important. It is the most southerly route around New Guinea to the Indian Ocean and there is no apparent reason why the flow should go further north in order to pass through the Makassar Strait. The model result thus raises the question of why in reality the Makassar Strait route appears to dominate the throughflow.


2021 ◽  
Author(s):  
Oceane Richet ◽  
Bernadette Sloyan ◽  
Bea Pena-Molino ◽  
Maxim Nikurashin

<p>The Indonesian seas play a fundamental role in the coupled climate system, featuring the only tropical exchange between ocean basins in the global thermohaline circulation. The Indonesian Throughflow (ITF) carries Pacific Ocean warm pool waters through the Indonesian Seas, where they are cooled and freshened. The incoming Pacific waters are strongly modified via vertical mixing driven by numerous ocean processes and ocean-atmosphere fluxes. The result is a unique water mass that can be tracked across the Indian Ocean basin and beyond. With our high-resolution regional model of the Indonesian Seas, designed with the MITgcm, we focus our study on the impact of the barotropic tides on the ITF. In fact, the strong tides coming from the Pacific and Indian Oceans enter in the Indonesian Seas through narrow straits and interact with the complex topography of the region (sills, islands, deep seas). This interaction between the tides and the topography impacts directly the ITF by modifying the transport toward the Indian Ocean.</p>


2005 ◽  
Vol 35 (5) ◽  
pp. 683-707 ◽  
Author(s):  
Russ E. Davis

Abstract As part of the World Ocean Circulation Experiment, 306 autonomous floats were deployed in the tropical and South Pacific Ocean and 228 were deployed in the Indian Ocean to observe the basinwide circulation near 900-m depth. Mean velocities, seasonal variability, and lateral eddy diffusivity from the resultant 2583 float-years of data are presented. Area averages, local function fits, and a novel application of objective mapping are used to estimate the mean circulation. Patterns of mean circulation resemble those at the surface in both basins. Well-developed subtropical gyres, twice as strong in the Indian Ocean as in the Pacific, feed western boundary currents. Tropical gyres are separated by eastward flow along the equator in both hemispheres of both basins, although the Indian subcontinent splits the north Indian tropical gyre. The Antarctic Circumpolar Current (ACC) and west wind drifts are prominent in both basins, generally tending slightly southward but deviating to the north behind the Del Cano, Kerguelen, and Campbell Plateaus and, of course, South America. Remarkably, the eastern boundaries of the southern subtropical gyres in all three basins apparently occur in the ocean interior, away from land. The Indian Ocean’s subtropical gyre, and perhaps part of the South Atlantic’s, reaches east to a retroflection just upstream of the Campbell Plateau south of New Zealand. Seasonal variability at 900 m is focused around the equator with weaker variability found near certain bathymetric features. There is a remarkable agreement between the observed seasonable variability and that predicted by the Jet Propulsion Laboratory (JPL)–Estimating the Circulation and Climate of the Ocean (ECCO) data-assimilating numerical model. Aside from seasonal effects, eddy variability is greatest along the equator, in tropical and subtropical western basins, and along the ACC. Integrals of velocity across regional passages (Tasman Sea, Mozambique Channel) provide useful reference for hydrographic analyses of transport. Across whole ocean basins, however, the uncertainty associated with the appropriate continuity relation for horizontal flow (e.g., geostrophy vs nondivergence) is comparable to the mean flow.


2021 ◽  
Vol 13 (5) ◽  
pp. 1013
Author(s):  
Kuo-Wei Yen ◽  
Chia-Hsiang Chen

Remote sensing (RS) technology, which can facilitate the sustainable management and development of fisheries, is easily accessible and exhibits high performance. It only requires the collection of sufficient information, establishment of databases and input of human and capital resources for analysis. However, many countries are unable to effectively ensure the sustainable development of marine fisheries due to technological limitations. The main challenge is the gap in the conditions for sustainable development between developed and developing countries. Therefore, this study applied the Web of Science database and geographic information systems to analyze the gaps in fisheries science in various countries over the past 10 years. Most studies have been conducted in the offshore marine areas of the northeastern United States of America. In addition, all research hotspots were located in the Northern Hemisphere, indicating a lack of relevant studies from the Southern Hemisphere. This study also found that research hotspots of satellite RS applications in fisheries were mainly conducted in (1) the northeastern sea area in the United States, (2) the high seas area of the North Atlantic Ocean, (3) the surrounding sea areas of France, Spain and Portugal, (4) the surrounding areas of the Indian Ocean and (5) the East China Sea, Yellow Sea and Bohai Bay sea areas to the north of Taiwan. A comparison of publications examining the three major oceans indicated that the Atlantic Ocean was the most extensively studied in terms of RS applications in fisheries, followed by the Indian Ocean, while the Pacific Ocean was less studied than the aforementioned two regions. In addition, all research hotspots were located in the Northern Hemisphere, indicating a lack of relevant studies from the Southern Hemisphere. The Atlantic Ocean and the Indian Ocean have been the subjects of many local in-depth studies; in the Pacific Ocean, the coastal areas have been abundantly investigated, while offshore local areas have only been sporadically addressed. Collaboration and partnership constitute an efficient approach for transferring skills and technology across countries. For the achievement of the sustainable development goals (SDGs) by 2030, research networks can be expanded to mitigate the research gaps and improve the sustainability of marine fisheries resources.


Radiocarbon ◽  
1980 ◽  
Vol 22 (3) ◽  
pp. 684-692 ◽  
Author(s):  
Georgette Delibrias

14C measurements were carried out on sea water samples collected in 1973, in the Indian ocean. The results obtained for 9 vertical profiles between 27° S and 48°S are presented. In surface water, the bomb 14C content is maximum at middle latitudes. A time lag relative to the north hemisphere bomb 14C delivery is apparent. In the more southern latitudes, 14C content remains very low.


1922 ◽  
Vol 59 (5) ◽  
pp. 200-212
Author(s):  
Robert R. Walls

Portuguese Nyasaland is the name given to the most northern part of Portuguese East Africa, lying between Lake Nyasa and the Indian Ocean. It is separated from the Tanganyika territory in the north by the River Rovuma and from the Portuguese province of Mozambique in the south by the River Lurio. The territory measures about 400 miles from east to west and 200 miles from north to south and has an area of nearly 90,000 square miles. This territory is now perhaps the least known part of the once Dark Continent, but while the writer was actually engaged in the exploration of this country in 1920–1, the Naval Intelligence Division of the British Admiralty published two handbooks, the Manual of Portuguese East Africa and the Handbook of Portuguese Nyasaland, which with their extensive bibliographies contained practically everything that was known of that country up to that date (1920). These handbooks make it unnecessary in this paper to give detailed accounts of the work of previous explorers.


1876 ◽  
Vol 9 (1) ◽  
pp. 147-154
Author(s):  
A. H. Schindler

The part of Belúchistán now under Persian rule is bounded upon the north by Seistán, upon the east by Panjgúr and Kej, upon the south by the Indian Ocean, and upon the west by Núrámshír, Rúdbár, and the Báshákerd mountains.This country enjoys a variety of climates; almost unbearable heat exists on the Mekrán coast, we find a temperate climate on the hill slopes and on the slightly raised plains as at Duzek and Bampúr, and a cool climate in the mountainous districts Serhad and Bazmán. The heat at Jálq is said to be so intense in summer that the gazelles lie down exhausted in the plains, and let themselves be taken by the people without any trouble.


2020 ◽  
Vol 33 (17) ◽  
pp. 7455-7478
Author(s):  
Nanxuan Jiang ◽  
Qing Yan ◽  
Zhiqing Xu ◽  
Jian Shi ◽  
Ran Zhang

AbstractTo advance our knowledge of the response of midlatitude westerlies to various external forcings, we investigate the meridional shift of midlatitude westerlies over arid central Asia (ACA) during the past 21 000 years, which experienced more varied forcings than the present day based on a set of transient simulations. Our results suggest that the evolution of midlatitude westerlies over ACA and driving factors vary with time and across seasons. In spring, the location of midlatitude westerlies over ACA oscillates largely during the last deglaciation, driven by meltwater fluxes and continental ice sheets, and then shows a long-term equatorward shift during the Holocene controlled by orbital insolation. In summer, orbital insolation dominates the meridional shift of midlatitude westerlies, with poleward and equatorward migration during the last deglaciation and the Holocene, respectively. From a thermodynamic perspective, variations in zonal winds are linked with the meridional temperature gradient based on the thermal wind relationship. From a dynamic perspective, variations in midlatitude westerlies are mainly induced by anomalous sea surface temperatures over the Indian Ocean through the Matsuno–Gill response and over the North Atlantic Ocean by the propagation of Rossby waves, or both, but their relative importance varies across forcings. Additionally, the modeled meridional shift of midlatitude westerlies is broadly consistent with geological evidence, although model–data discrepancies still exist. Overall, our study provides a possible scenario for a meridional shift of midlatitude westerlies over ACA in response to various external forcings during the past 21 000 years and highlights important roles of both the Indian Ocean and the North Atlantic Ocean in regulating Asian westerlies, which may shed light on the behavior of westerlies in the future.


2021 ◽  
Vol 331 ◽  
pp. 07004
Author(s):  
Aprilyanto ◽  
I Dewa Ketut Kerta Widana ◽  
Ady Subiyanto ◽  
Hafizh Surya Islami

Geographically, the Mentawai Islands Regency has a territorial boundary with the sea. The north side is the Siberut Strait, the south side is bordered by the Indian Ocean, the east side is bordered by the Mentawai Strait, and the west side is bordered by the Indian Ocean. The Mentawai Islands Regency area has a high level of seismicity which makes it prone to earthquakes and tsunamis because it has an earthquake return period. Population and economic growth in the Mentawai Islands Regency continue to increase, resulting in a higher level of threat due to earthquakes and tsunamis to people and buildings. By using earthquake return period modeling based on secondary data and population and building growth modeling using system dynamics, Pentahelix can implement disaster risk mitigation in the Mentawai Islands Regency to reduce the risk of casualties and material losses. Based on the prediction that the Mentawai earthquake return period on October 25, 2010, will occur for 24 years to 57 years or around 2034 to 2067, and the results of system dynamics modeling with Powersim Studio 10 software, the number of vulnerable people affected is 24,764 people up to 42,944 people and potential losses. housing sector between 144.73 billion to 250.98 billion.


Sign in / Sign up

Export Citation Format

Share Document