scholarly journals Response to Temperature of a Class of In Situ Hyperspectral Radiometers

2017 ◽  
Vol 34 (8) ◽  
pp. 1795-1805 ◽  
Author(s):  
Giuseppe Zibordi ◽  
Marco Talone ◽  
Lukasz Jankowski

AbstractThe response to temperature of sample hyperspectral radiometers commonly used to support the validation of satellite ocean color data was characterized in the 400–800-nm spectral range. Measurements performed in the 10°–40°C interval at 5°C increments showed mean temperature coefficients varying from −0.04 × 10−2 (°C)−1 at 400 nm to +0.33 × 10−2 (°C)−1 at 800 nm, which are largely explained by the temperature coefficient of the photodetector array constituting the core of the sensor. Overall, the results indicate the possibility of applying temperature corrections with an uncertainty of approximately 0.03 × 10−2 (°C)−1 for the class of hyperspectral radiometers investigated in the study.

2014 ◽  
Vol 11 (6) ◽  
pp. 3003-3034 ◽  
Author(s):  
G. Zibordi ◽  
F. Mélin ◽  
J.-F. Berthon ◽  
M. Talone

Abstract. The accuracy of primary satellite ocean color data products from the Moderate Resolution Imaging Spectroradiometer on-board Aqua (MODIS-A) and the Visible/Infrared Imager/Radiometer Suite (VIIRS), is investigated in the Western Black Sea using in situ measurements from the Gloria site included in the Ocean Color component of the Aerosol Robotic Network (AERONET-OC). The analysis is also extended to an additional well-established AERONET-OC site in the northern Adriatic Sea characterized by optically complex coastal waters exhibiting similarities with those observed at the Gloria site. Results from the comparison of normalized-water leaving radiance LWN indicate biases of a few percent between satellite derived and in situ data at the center-wavelengths relevant for the determination of chlorophyll a concentration (443–547 nm, or equivalent). Remarkable is the consistency among the annual cycle determined with time series of satellite-derived and in situ LWN ratios at these center-wavelengths. Contrarily, the differences between in situ and satellite-derived LWN are pronounced at the blue (i.e., 412 nm) and red (i.e., 667 nm, or equivalent) center-wavelengths, suggesting difficulties in confidently applying satellite-derived radiometric data from these spectral regions for quantitative analysis in optically complex waters.


Ocean Science ◽  
2015 ◽  
Vol 11 (2) ◽  
pp. 275-286 ◽  
Author(s):  
G. Zibordi ◽  
F. Mélin ◽  
J.-F. Berthon ◽  
M. Talone

Abstract. The accuracy of primary satellite ocean color data products from the Moderate Resolution Imaging Spectroradiometer on-board Aqua (MODIS-A) and the Visible/Infrared Imager/Radiometer Suite (VIIRS) is investigated in the Western Black Sea using in situ measurements from the Gloria site included in the ocean color component of the Aerosol Robotic Network (AERONET-OC). The analysis is also extended to an additional well-established AERONET-OC site in the northern Adriatic Sea characterized by optically complex coastal waters exhibiting similarities to those observed at the Gloria site. Results from the comparison of normalized water-leaving radiance LWN indicate biases of a few percent between satellite-derived and in situ data at the center wavelengths relevant for the determination of chlorophyll a concentrations (443–547 nm, or equivalent). Remarkable is the consistency between the annual cycle determined with time series of satellite-derived and in situ LWN ratios at these center wavelengths. Contrarily, the differences between in situ and satellite-derived LWN are pronounced at the blue (i.e., 412 nm) and red (i.e., 667 nm, or equivalent) center wavelengths, confirming difficulties in confidently applying satellite-derived radiometric data from these spectral regions for quantitative analysis in optically complex waters.


2021 ◽  
Vol 13 (14) ◽  
pp. 2673
Author(s):  
Adam Lawson ◽  
Jennifer Bowers ◽  
Sherwin Ladner ◽  
Richard Crout ◽  
Christopher Wood ◽  
...  

The satellite validation navy tool (SAVANT) was developed by the Naval Research Laboratory to help facilitate the assessment of the stability and accuracy of ocean color satellites, using numerous ground truth (in situ) platforms around the globe and support methods for match-up protocols. The effects of varying spatial constraints with permissive and strict protocols on match-up uncertainty are evaluated, in an attempt to establish an optimal satellite ocean color calibration and validation (cal/val) match-up protocol. This allows users to evaluate the accuracy of ocean color sensors compared to specific ground truth sites that provide continuous data. Various match-up constraints may be adjusted, allowing for varied evaluations of their effects on match-up data. The results include the following: (a) the difference between aerosol robotic network ocean color (AERONET-OC) and marine optical Buoy (MOBY) evaluations; (b) the differences across the visible spectrum for various water types; (c) spatial differences and the size of satellite area chosen for comparison; and (d) temporal differences in optically complex water. The match-up uncertainty analysis was performed using Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) SNPP data at the AERONET-OC sites and the MOBY site. It was found that the more permissive constraint sets allow for a higher number of match-ups and a more comprehensive representation of the conditions, while the restrictive constraints provide better statistical match-ups between in situ and satellite sensors.


2022 ◽  
Vol 14 (2) ◽  
pp. 386
Author(s):  
Léa Schamberger ◽  
Audrey Minghelli ◽  
Malik Chami ◽  
François Steinmetz

The invasive species of brown algae Sargassum gathers in large aggregations in the Caribbean Sea, and has done so especially over the last decade. These aggregations wash up on shores and decompose, leading to many socio-economic issues for the population and the coastal ecosystem. Satellite ocean color data sensors such as Sentinel-3/OLCI can be used to detect the presence of Sargassum and estimate its fractional coverage and biomass. The derivation of Sargassum presence and abundance from satellite ocean color data first requires atmospheric correction; however, the atmospheric correction procedure that is commonly used for oceanic waters needs to be adapted when dealing with the occurrence of Sargassum because the non-zero water reflectance in the near infrared band induced by Sargassum optical signature could lead to Sargassum being wrongly identified as aerosols. In this study, this difficulty is overcome by interpolating aerosol and sunglint reflectance between nearby Sargassum-free pixels. The proposed method relies on the local homogeneity of the aerosol reflectance between Sargassum and Sargassum-free areas. The performance of the adapted atmospheric correction algorithm over Sargassum areas is evaluated. The proposed method is demonstrated to result in more plausible aerosol and sunglint reflectances. A reduction of between 75% and 88% of pixels showing a negative water reflectance above 600 nm were noticed after the correction of the several images.


2020 ◽  
Vol 12 (10) ◽  
pp. 1669
Author(s):  
Krista Alikas ◽  
Viktor Vabson ◽  
Ilmar Ansko ◽  
Gavin H. Tilstone ◽  
Giorgio Dall’Olmo ◽  
...  

The Fiducial Reference Measurements for Satellite Ocean Color (FRM4SOC) project has carried out a range of activities to evaluate and improve the state-of-the-art in ocean color radiometry. This paper described the results from a ship-based intercomparison conducted on the Atlantic Meridional Transect 27 from 23rd September to 5th November 2017. Two different radiometric systems, TriOS-Radiation Measurement Sensor with Enhanced Spectral resolution (RAMSES) and Seabird-Hyperspectral Surface Acquisition System (HyperSAS), were compared and operated side-by-side over a wide range of Atlantic provinces and environmental conditions. Both systems were calibrated for traceability to SI (Système international) units at the same optical laboratory under uniform conditions before and after the field campaign. The in situ results and their accompanying uncertainties were evaluated using the same data handling protocols. The field data revealed variability in the responsivity between TRiOS and Seabird sensors, which is dependent on the ambient environmental and illumination conditions. The straylight effects for individual sensors were mostly within ±3%. A near infra-red (NIR) similarity correction changed the water-leaving reflectance (ρw) and water-leaving radiance (Lw) spectra significantly, bringing also a convergence in outliers. For improving the estimates of in situ uncertainty, it is recommended that additional characterization of radiometers and environmental ancillary measurements are undertaken. In general, the comparison of radiometric systems showed agreement within the evaluated uncertainty limits. Consistency of in situ results with the available Sentinel-3A Ocean and Land Color Instrument (OLCI) data in the range from (400…560) nm was also satisfactory (−8% < Mean Percentage Difference (MPD) < 15%) and showed good agreement in terms of the shape of the spectra and absolute values.


Sign in / Sign up

Export Citation Format

Share Document