scholarly journals Assessment of Significant Wave Height in the Taiwan Strait Measured by a Single HF Radar System

2019 ◽  
Vol 36 (7) ◽  
pp. 1419-1432 ◽  
Author(s):  
Linghui Cai ◽  
Shaoping Shang ◽  
Guomei Wei ◽  
Zhigang He ◽  
Yanshuang Xie ◽  
...  

AbstractDual high-frequency (HF) radar systems are often used to provide measurements of waves, winds, and currents. In this study, the accuracy of wave measurements using a single HF radar system (OS081H-A) was explored using datasets obtained during 5–27 January 2014 in the southwestern Taiwan Strait. We selected the study region as an area with >90% coverage (i.e., the range was <100 km). Qualitative and quantitative intercomparison of wave measurements (by the radar and five buoys) and wave model products [from the Simulating Wave Nearshore (SWAN) model] were conducted. Intercomparison of the modeled and in situ significant wave height Hs showed that the model-predicted Hs could be considered to be acceptable for use as “sea truth” to evaluate the radar-derived Hs, with mean bias from −0.45 to −0.16 m, mean absolute error (MAE) of 0.24–0.45 m, and root-mean-square error of 0.31–0.54 m. It was found that the MAE of radar-derived Hs was ≤ 1 m for 86% of the sector (except at the edge of sector) when the model-predicted Hs was ≥ 1.5 m. In particular, the MAE was less than 0.6 m for 63% of the sector, which was mainly distributed in the area with a bearing from −50° to +70° and a range of 20–70 km. The results are promising, but more work is needed. We employed a spatial distribution function for the MAE of the radar-derived Hs over the sample duration based on range, bearing, and mean radar-derived Hs.

10.29007/wg8s ◽  
2018 ◽  
Author(s):  
Marco Picone ◽  
Arianna Orasi ◽  
Aldo Drago ◽  
Fulvio Capodici ◽  
Giuseppe Ciraolo ◽  
...  

The CALYPSO HF radar network is a permanent and fully operational observing system currently composed of four CODAR HF stations. The system is providing real- time hourly maps of sea surface currents and wave data in the Malta-Sicily Channel since 2012. Significant wave height derived from the HF radar wave measurements are confirmed to be a reliable source of wave information even in case of extreme events. However, it is noticed that the HF radar wave data are subject to differing interfering noise in the signal from unknown sources that may be competing with transmissions in the same frequency band. These interferences lead to frequent gaps and/or outliers that affect the continuity and reliability of the data set. The aim of this work is to estimate missing values and to detect possible outliers building and fitting a Markov chain mixture model on the significant wave height data collected at the four stations. It is verified that the proposed procedure is sufficiently robust since the model estimates succeed to classify radar observations with a high percentage of missing data and to equally highlight spikes and outliers.


Author(s):  
Adil Rasheed ◽  
Jakob Kristoffer Süld ◽  
Mandar Tabib

Accurate prediction of near surface wind and wave height are important for many offshore activities like fishing, boating, surfing, installation and maintenance of marine structures. The current work investigates the use of different methodologies to make accurate predictions of significant wave height and local wind. The methodology consists of coupling an atmospheric code HARMONIE and a wave model WAM. Two different kinds of coupling methodologies: unidirectional and bidirectional coupling are tested. While in Unidirectional coupling only the effects of atmosphere on ocean surface are taken into account, in bidirectional coupling the effects of ocean surface on the atmosphere are also accounted for. The predicted values of wave height and local wind at 10m above the ocean surface using both the methodologies are compared against observation data. The results show that during windy conditions, a bidirectional coupling methodology has better prediction capability.


1995 ◽  
Vol 117 (4) ◽  
pp. 294-297 ◽  
Author(s):  
J. C. Teixeira ◽  
M. P. Abreu ◽  
C. Guedes Soares

Two wind models were developed and their results were compared with data gathered during the Wangara experiment, so as to characterize their uncertainty. One of the models was adopted to generate the wind fields used as input to a second generation wave model. The relative error in the wind speed was considered in order to assess the uncertainties of the predictions or the significant wave height. Different time steps for the wind input were also used to determine their effect on the predicted significant wave height.


2021 ◽  
Vol 13 (19) ◽  
pp. 3833
Author(s):  
Meng Sun ◽  
Jianting Du ◽  
Yongzeng Yang ◽  
Xunqiang Yin

Accurate numerical simulation of ocean waves is one of the most important measures to ensure shipping safety, offshore engineering construction, etc. The use of wave observations from satellite is an efficient way to correct model results. The goal of this paper is to assess the performance of assimilation in the MASNUM wave model for the Indian Ocean. The assimilation technique is based on Ensemble Adjusted Kalman Filter, with a variable ensemble constructed by the dynamic sampling method rather than ensemble members of wave model. Observations of significant wave height from satellites Jason-3 and CFOSAT are regarded as assimilation data and independent validation data, respectively. The results indicate good performance in terms of absolute mean error for significant wave height. Model error decreases by roughly 20–40% in high-sea conditions.


2013 ◽  
Vol 31 (3) ◽  
pp. 483 ◽  
Author(s):  
Guilherme Colaço Melo Dos Passos ◽  
Nelson Violante Carvalho ◽  
Uggo Ferreira Pinho ◽  
Alexandre Pereira Cabral ◽  
Frederico F. Ostritz

ABSTRACT. The estimates of significant wave height (SWH) and wind speed at 10 meter height (u10) from the Jason-2 and ENVISAT satellites, over the intertropical region, are analysed. Some authors have tested the dependency of satellite radar wind/wave measurements on local environmental conditions, particularly on wave age, with no conclusive results. Our data show that Jason-2 overestimates high values of SWH and underestimates low values, while ENVISAT exhibits the opposite behaviour. The correlation coefficient between buoy measurements and altimeter data is around 0.95, with bias and root mean square error (RMSE) of, 3 and 15 cm respectively. On the other hand, Jason-2 underestimates u10 throughout the whole measured range, while ENVISAT overestimates throughout the whole range for speeds over 3 m/s. The correlation coefficient is around 0.90, with bias and RMSE around 0.20 cm and 1.5 m/s, respectively. The altimeter estimates in the intertropical region are similar to those obtained with global coverage, hence the sensitivity to sea state to extract wind speed and wave height is not so obvious in our data set. Therefore, the results indicate that the algorithms employed have a fair enough performance in the intertropical region.Keywords: wind waves, wind speed, altimeter, Jason-2, ENVISAT. RESUMO. As estimativas de altura significativa de onda (SWH) e de intensidade do vento a 10 metros de altura (u10) dos altímetros dos satélites Jason-2 e ENVISAT, obtidas na região intertropical, são analisadas. Alguns trabalhos apontam para uma possível dependência da esbeltez das ondas, e portanto do estado de mar, para extração de u10 e SWH, o que tornaria os algoritmos empregados dependentes da localidade. Os resultados aqui obtidos mostram que o Jason-2 em geral superestima altos valores de SWH e subestima baixos valores, enquanto que para o ENVISAT a tendência encontrada é a inversa. Foram obtidos coeficientes de correlação entre a SWH de boias e dos altímetros em torno de 0,95, e bias e erro médio quadrático (RMSE) de aproximadamente 3 e 15 cm, respectivamente. Em relação à u10, o Jason-2 subestima ligeiramente os valores, independente da faixa de intensidade do vento, enquanto que o ENVISAT os superestimam em quase todas as faixas de intensidade, exceto para ventos menores que 3 c/s. Os coeficientes de correlação se encontram em torno de 0,90, com bias e erro médio quadrático de, respectivamente, aproximadamente 0,20 cm e 1,5 c/s. Os resultados indicam que o desempenho na região intertropical é similar aos resultados obtidos empregando medições globais, que são altamente concentradas em altas latitudes no Hemisfério Norte. O efeito da condição do estado de mar para extração de SWH e u10, caso seja importante, não aparenta ser considerável no conjunto de dados aqui empregado. Portanto, os resultados apontam para um desempenho bastante aceitável de tais algoritmos quando empregados na região intertropical.Palavras-chave: altura significativa de ondas, intensidade do vento, altimetria, Jason-2, ENVISAT.


Author(s):  
Andreas Sterl ◽  
Sofia Caires

The European Centre for Medium Range Weather Forecasts (ECMWF) has recently finished ERA-40, a reanalysis covering the period September 1957 to August 2002. One of the products of ERA-40 consists of 6-hourly global fields of wave parameters like significant wave height and wave period. These data have been generated with the Centre’s WAM wave model. From these results the authors have derived climatologies of important wave parameters, including significant wave height, mean wave period, and extreme significant wave heights. Particular emphasis is on the variability of these parameters, both in space and time. Besides for scientists studying climate change, these results are also important for engineers who have to design maritime constructions. This paper describes the ERA-40 data and gives an overview of the results derived. The results are available on a global 1.5° × 1.5° grid. They are accessible from the web-based KNMI/ERA-40 Wave Atlas at http://www.knmi.nl/waveatlas.


2017 ◽  
Author(s):  
M. M. Amrutha ◽  
V. Sanil Kumar

Abstract. The growth and decay of surface wind-waves during one-month period in a typical Indian summer monsoon is investigated based on the data collected at 9 to 15 m water depth at 4 locations in the nearshore waters of the eastern Arabian Sea covering a spatial distance of ~ 350 km. The significant wave height varied from 0.7 to 5.5 m during the data collection considered in the analysis. The heights of waves during the measurement period often exceed 3 m. The most extreme wave height is 1.50 to 1.62 times the significant wave height and the most extreme crest height of the wave is 1.23 to 1.35 times the significant wave height of the same 30-minutes record. The average ratio of crest height of the wave to the height of the same wave is 0.58 to 0.67. The height of waves having maximum crest height is smaller than the maximum wave height during 30 minutes period. Measured waves are predominantly swell, but since the majority of wave generation during the monsoon is adjacent to the study area and the wind–wave coupling is strong, wave periods are rarely above 15 s. The numerical wave model could estimate the wave height reasonably well during the wave growth compared to the wave decay period. Hovmöller diagrams show a considerable spatial variability in the wave and wind pattern in the Indian Ocean during the high wave event at the eastern Arabian Sea.


2021 ◽  
Author(s):  
Guillaume Dodet ◽  
Jean-Raymond Bidlot ◽  
Mickaël Accensi ◽  
Mathias Alday ◽  
Saleh Abdalla ◽  
...  

&lt;p&gt;Ocean wave information is of major importance for a number of applications including climate studies, safety at sea, marine engineering (offshore and coastal), and coastal risk management. Depending on the scales and regions of interest, several data sources may be considered (e.g. in situ data, VOS observations, altimeter records, numerical wave model), each one with its pros and cons. In order to optimize the use of multiple source wave information (e.g. through assimilation scheme in NWP), the error characteristics of each measurement system need to be investigated and inter-compared. In this study, we use triple collocation technique to estimate the random error variances of significant wave height from in situ, altimeter and model data. The buoy dataset is a selection of ~100 in-situ measuring stations provided by the CMEMS In-Situ Thematic Assembly Center. The altimeter dataset is composed of the ESA Sea State CCI V1.1 L2P product. The model dataset is the result of WW3 Ifremer hindcast run forced with ERA5 winds using the recently updated T475 parameterization. In comparisons to previous studies using similar techniques, the large triple collocation dataset (~450 000 matchups in total) generated for this study provides some new insights on the error variability within in situ stations, satellite missions and upon sea state conditions.Moreover, the results of the triple collocation technique help developing improved calibration of the altimeter missions included in the ESA Sea State CCI V1.1 dataset.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document