Longwave Radiation Corrections for the OMNI Buoy Network

Abstract The inception of a moored buoy network in the northern Indian Ocean in 1997 paved the way for systematic collection of longterm time series observations of meteorological and oceanographic parameters. This buoy network was revamped in 2011 with OMNI (Ocean Moored buoy Network for north Indian Ocean) buoys fitted with additional sensors to better quantify the air-sea fluxes. An inter-comparison of OMNI buoy measurements with the nearby WHOI mooring during the year 2015 revealed an overestimation of downwelling longwave radiation (LWR↓). Analysis of the OMNI and WHOI radiation sensors at a test station at NIOT during 2019 revealed that the accurate and stable amplification of the thermopile voltage records along with the customized data logger in the WHOI system results in better estimations of LWR↓. The offset in NIOT measured LWR↓ is estimated firstly by segregating the LWR↓ during clear sky conditions identified using the downwelling shortwave radiation measurements from the same test station, and secondly, finding the offset by taking the difference with expected theoretical clear sky LWR↓. The corrected LWR↓ exhibited good agreement with that of collocated WHOI measurements, with a correlation of 0.93. This method is applied to the OMNI field measurements and again compared with the nearby WHOI mooring measurements, exhibiting a better correlation of 0.95. This work has led to the revamping of radiation measurements in OMNI buoys and provides a reliable method to correct past measurements and improve estimation of air-sea fluxes in the Indian Ocean.

Author(s):  
S. V. S. Sai Krishna ◽  
P. Manavalan ◽  
P. V. N. Rao

Daily net surface radiation fluxes are estimated for Indian land mass at spatial grid intervals of 0.1 degree. Two approaches are employed to obtain daily net radiation for four sample days viz., November 19, 2013, December 16, 2013, January 8, 2014 and March 20, 2014. Both the approaches compute net shortwave and net longwave fluxes, separately and sum them up to obtain net radiation. The first approach computes net shortwave radiation using daily insolation product of Kalpana VHRR and 15 days time composited broadband albedo product of Oceansat OCM2. The net outgoing longwave radiation is computed using Stefan Boltzmann equation corrected for humidity and cloudiness. In the second approach, instantaneous clear-sky net-shortwave radiation is estimated using computed clear-sky incoming shortwave radiation and the gridded MODIS 16-day time composited albedo product. The net longwave radiation is obtained by estimating outgoing and incoming longwave radiation fluxes, independently. In this, MODIS derived surface emissivity and skin temperature parameters are used for estimating outgoing longwave radiation component. In both the approaches, surface air temperature data required for estimation of net longwave radiation fluxes are extracted from India Meteorological Department’s (IMD) Automatic Weather Station (AWS) records. Estimates by the two different approaches are evaluated by comparing daily net radiation fluxes with CERES based estimates corresponding to the sample days, through statistical measures. The estimated all sky daily net radiation using the first approach compared well with CERES SYN1deg daily average net radiation with r<sup>2</sup> values of the order of 0.7 and RMS errors of the order of 8&ndash;16 w/m<sup>2</sup>.


2012 ◽  
Vol 29 (3) ◽  
pp. 375-381 ◽  
Author(s):  
Xianglei Huang ◽  
Norman G. Loeb ◽  
Huiwen Chuang

Abstract Clouds and the Earth’s Radiant Energy System (CERES) daytime longwave (LW) radiances are determined from the difference between a total (TOT) channel (0.3–200 μm) measurement and a shortwave (SW) channel (0.3–5 μm) measurement, while nighttime LW radiances are obtained directly from the TOT channel. This means that a drift in the SW channel or the SW portion of the TOT channel could impact the daytime longwave radiances, but not the nighttime ones. This study evaluates daytime and nighttime CERES LW radiances for a possible secular drift in CERES LW observations using spectral radiances observed by Atmospheric Infrared Sounder (AIRS). By examining the coincidental AIRS and CERES Flight Model 3 (FM3) measurements over the tropical clear-sky oceans for all of January and July months since 2005, a secular drift of about −0.11% yr−1 in the daytime CERES-FM3 longwave unfiltered radiance can be identified in the CERES Single Scanner Footprint (SSF) Edition 2 product. This provides an upper-bound estimation for the drift in daytime outgoing longwave radiation, which is approximately −0.323 W m−2 yr−1. This estimation is consistent with the independent assessment concluded by the CERES calibration team. Such secular drift has been greatly reduced in the latest CERES SSF Edition 3 product. Comparisons are conducted for the CERES window channel as well, and it shows essentially no drift. This study serves as a practical example illustrating how the measurements of spectrally resolved radiances can be used to help evaluate data products from other narrowband or broadband measurements.


2021 ◽  
Author(s):  
Joonas Merikanto ◽  
Kalle Nordling ◽  
Petri Räisänen ◽  
Jouni Räisänen ◽  
Declan O'Donnell ◽  
...  

&lt;p&gt;We investigate how a regionally confined radiative forcing of South and East Asian aerosols translate into local and remote surface temperature responses across the globe. To do so, we carry out equilibrium climate simulations with and without modern day South and East Asian anthropogenic aerosols in two climate models with independent development histories (ECHAM6.1 and NorESM1). &amp;#160;We run the models with the same anthropogenic aerosol representations via MACv2-SP (a simple plume implementation of the 2&lt;sup&gt;nd&lt;/sup&gt; version of the Max Planck Institute Aerosol Climatology). This leads to a near identical change in instantaneous direct and indirect aerosol forcing due to removal of Asian aerosols in the two models. We then robustly decompose and compare the energetic pathways that give rise to the global and regional surface temperature effects in the models by a novel temperature response decomposition method, which translated the changes in atmospheric and surface energy fluxes into surface temperature responses by using a concept of planetary emissivity. &amp;#160;&lt;/p&gt;&lt;p&gt;We find that the removal of South and East Asian anthropogenic aerosols leads to strong local warming &amp;#160;response from increased clear-sky shortwave radiation over the region, combined with opposing warming and cooling responses due to changes in cloud longwave and shortwave radiation. However, the local warming response is strongly modulated by the changes in horizontal atmospheric energy transport. Atmospheric energy transport and changes in clear-sky longwave radiation redistribute the surface temperature responses efficiently across the Northern hemisphere, and to a lesser extent also over the Southern hemisphere. The model-mean global surface temperature response to Asian anthropogenic aerosol removal is 0.26&amp;#177;0.04 &amp;#176;C (0.22&amp;#177;0.03 for ECHAM6.1 and 0.30&amp;#177;0.03 &amp;#176;C for NorESM1) of warming. Model-to-model differences in global surface temperature response mainly arise from differences in longwave cloud (0.01&amp;#177;0.01 for ECHAM6.1 and 0.05&amp;#177;0.01 &amp;#176;C for NorESM1) and shortwave cloud (0.03&amp;#177;0.03 for ECHAM6.1 and 0.07&amp;#177;0.02 &amp;#176;C for NorESM1) responses. The differences in cloud responses between the models also dominate the differences in regional temperature responses. In both models, the Northern hemispheric surface warming amplifies towards the Arctic, where the total temperature response is highly seasonal and modulated by seasonal changes in oceanic heat exchange and clear-sky longwave radiation.&lt;/p&gt;&lt;p&gt;We estimate that under a strong Asian aerosol mitigation policy tied with strong greenhouse gas mitigation (Shared Socioeconomic Pathway 1-1.9) the Asian aerosol reductions can add around 8 years&amp;#8217; worth of current day global warming during the next few decades.&lt;/p&gt;


2018 ◽  
Vol 18 (8) ◽  
pp. 5321-5342 ◽  
Author(s):  
Gillian D. Thornhill ◽  
Claire L. Ryder ◽  
Eleanor J. Highwood ◽  
Len C. Shaffrey ◽  
Ben T. Johnson

Abstract. The impact of biomass burning aerosol (BBA) on the regional climate in South America is assessed using 30-year simulations with a global atmosphere-only configuration of the Met Office Unified Model. We compare two simulations of high and low emissions of biomass burning aerosol based on realistic interannual variability. The aerosol scheme in the model has hygroscopic growth and optical properties for BBA informed by recent observations, including those from the recent South American Biomass Burning Analysis (SAMBBA) intensive aircraft observations made during September 2012. We find that the difference in the September (peak biomass emissions month) BBA optical depth between a simulation with high emissions and a simulation with low emissions corresponds well to the difference in the BBA emissions between the two simulations, with a 71.6 % reduction from high to low emissions for both the BBA emissions and the BB AOD in the region with maximum emissions (defined by a box of extent 5–25∘ S, 40–70∘ W, used for calculating mean values given below). The cloud cover at all altitudes in the region of greatest BBA difference is reduced as a result of the semi-direct effect, by heating of the atmosphere by the BBA and changes in the atmospheric stability and surface fluxes. Within the BBA layer the cloud is reduced by burn-off, while the higher cloud changes appear to be responding to stability changes. The boundary layer is reduced in height and stabilized by increased BBA, resulting in reduced deep convection and reduced cloud cover at heights of 9–14 km, above the layer of BBA. Despite the decrease in cloud fraction, September downwelling clear-sky and all-sky shortwave radiation at the surface is reduced for higher emissions by 13.77 ± 0.39 W m−2 (clear-sky) and 7.37 ± 2.29 W m−2 (all-sky), whilst the upwelling shortwave radiation at the top of atmosphere is increased in clear sky by 3.32 ± 0.09 W m−2, but decreased by -1.36±1.67 W m−2 when cloud changes are included. Shortwave heating rates increase in the aerosol layer by 18 % in the high emissions case. The mean surface temperature is reduced by 0.14 ± 0.24 ∘C and mean precipitation is reduced by 14.5 % in the peak biomass region due to both changes in cloud cover and cloud microphysical properties. If the increase in BBA occurs in a particularly dry year, the resulting reduction in precipitation may exacerbate the drought. The position of the South Atlantic high pressure is slightly altered by the presence of increased BBA, and the strength of the southward low-level jet to the east of the Andes is increased. There is some evidence that some impacts of increased BBA persist through the transition into the monsoon, particularly in precipitation, but the differences are only statistically significant in some small regions in November. This study therefore provides an insight into how variability in deforestation, realized through variability in biomass burning emissions, may contribute to the South American climate, and consequently on the possible impacts of future changes in BBA emissions.


2017 ◽  
Vol 17 (13) ◽  
pp. 8081-8100 ◽  
Author(s):  
Reinout Boers ◽  
Theo Brandsma ◽  
A. Pier Siebesma

Abstract. A 50-year hourly data set of global shortwave radiation, cloudiness and visibility over the Netherlands was used to quantify the contribution of aerosols and clouds to the trend in yearly-averaged all-sky radiation (1.81 ± 1.07 W m−2 decade−1). Yearly-averaged clear-sky and cloud-base radiation data show large year-to-year fluctuations caused by yearly changes in the occurrence of clear and cloudy periods and cannot be used for trend analysis. Therefore, proxy clear-sky and cloud-base radiations were computed. In a proxy analysis hourly radiation data falling within a fractional cloudiness value are fitted by monotonic increasing functions of solar zenith angle and summed over all zenith angles occurring in a single year to produce an average. Stable trends can then be computed from the proxy radiation data. A functional expression is derived whereby the trend in proxy all-sky radiation is a linear combination of trends in fractional cloudiness, proxy clear-sky radiation and proxy cloud-base radiation. Trends (per decade) in fractional cloudiness, proxy clear-sky and proxy cloud-base radiation were, respectively, 0.0097 ± 0.0062, 2.78 ± 0.50 and 3.43 ± 1.17 W m−2. To add up to the all-sky radiation the three trends have weight factors, namely the difference between the mean cloud-base and clear-sky radiation, the clear-sky fraction and the fractional cloudiness, respectively. Our analysis clearly demonstrates that all three components contribute significantly to the observed trend in all-sky radiation. Radiative transfer calculations using the aerosol optical thickness derived from visibility observations indicate that aerosol–radiation interaction (ARI) is a strong candidate to explain the upward trend in the clear-sky radiation. Aerosol–cloud interaction (ACI) may have some impact on cloud-base radiation, but it is suggested that decadal changes in cloud thickness and synoptic-scale changes in cloud amount also play an important role.


2017 ◽  
Vol 56 (4) ◽  
pp. 833-848 ◽  
Author(s):  
Meilin Zhu ◽  
Tandong Yao ◽  
Wei Yang ◽  
Baiqing Xu ◽  
Xiaojun Wang

AbstractAccurate evaluations of incoming longwave radiation (Lin) parameterization have practical implications for glacier and river runoff changes in high-mountain regions of the Tibetan Plateau (TP). To identify potential means of accurately predicting spatiotemporal variations in Lin, 13 clear-sky parameterizations combined with 10 cloud corrections for all-sky atmospheric emissivity were evaluated at five sites in high-mountain regions of the TP through temporal and spatial parameter transfer tests. Most locally calibrated parameterizations for clear-sky and all-sky conditions performed well when applied to the calibration site. The best parameterization at five sites is Dilley and O’Brien’s A model combined with Sicart et al.’s A for cloud-correction-incorporated relative humidity. The performance of parameter transferability in time is better than that in space for the same all-sky parameterizations. The performance of parameter transferability in space presents spatial discrepancies. In addition, all all-sky parameterizations show a decrease in performance with increasing altitude regardless of whether the parameters of all-sky parameterizations were recalibrated by local conditions or transferred from other study sites. This may be attributable to the difference between screen-level air temperature and the effective atmospheric boundary layer temperature and to different cloud-base heights. Nevertheless, such worse performance at higher altitudes is likely to change because of terrain, underlying surfaces, and wind systems, among other factors. The study also describes possible spatial characteristics of Lin and its driving factors by reviewing the few studies about Lin for the mountain regions of the TP.


MAUSAM ◽  
2021 ◽  
Vol 60 (1) ◽  
pp. 61-72
Author(s):  
A. MUTHUCHAMI

The two basins Arabian sea (ARS) and Bay of Bengal (BOB) of the North Indian Ocean (NIO) are having different dynamic and thermodynamic character and therefore ARS has subdued cyclone activity than BOB. In order to examine the difference between these basins in respect of various meteorological parameters, using NCEP/NCAR reanalysis data for the period 1971-2005 during the months of September to December the distribution of the dynamic and thermodynamic parameters are discussed. It is seen that sea surface temperature (SST) is not responsible for subdued activity over ARS as the SST over ARS and BOB is mostly above minimum threshold level. In respect of wind shear, during October in ARS north of 10°  N is favourable for storm formation unlike September where the whole of Arabian sea except the region north of 20° N is inert to cyclone formation. The humidity factor is more pronounced in ARS for prohibiting storm formation than shear factor. In all the months static instability at 90° E is least and so the atmosphere is neutral throughout the period and consequence of it any small trigger in the lower level will induce the system to grow further.  The BOB is more barotropic than ARS. There is a considerable difference exists in precipitation rate as a consequence of more stable atmosphere over Arabian sea than in Bay of Bengal even at the lower level.


2019 ◽  
Vol 32 (21) ◽  
pp. 7539-7560 ◽  
Author(s):  
Wei Chen ◽  
Buwen Dong ◽  
Laura Wilcox ◽  
Feifei Luo ◽  
Nick Dunstone ◽  
...  

ABSTRACT Observations indicate large changes in temperature extremes over China during the last four decades, exhibiting as significant increases in the amplitude and frequency of hot extremes and decreases in the amplitude and frequency of cold extremes. An ensemble of transient experiments with the fully coupled atmosphere–ocean model HadGEM3-GC2, including both anthropogenic forcing and natural forcing, successfully reproduces the spatial pattern and magnitude of observed historical trends in both hot and cold extremes. The model-simulated trends in temperature extremes primarily come from the positive trends in clear-sky longwave radiation, which is mainly due to the increases in greenhouse gases (GHGs). An ensemble of sensitivity experiments with Asian anthropogenic aerosol (AA) emissions fixed at their 1970s levels tends to overestimate the trends in temperature extremes, indicating that local AA emission changes have moderated the trends in these temperature extremes over China. The recent increases in Asian AA drive cooling trends over China by inducing negative clear-sky shortwave radiation directly through the aerosol–radiation interaction, which partly offsets the strong warming effect by GHG changes. The cooling trends induced by Asian AA changes are weaker over northern China during summer, which is due to the warming effect by the positive shortwave cloud radiative effect through the AA-induced atmosphere–cloud feedback. This accounts for the observed north–south gradients of the historical trends in some temperature extremes over China, highlighting the importance of local Asian AA emission changes on spatial heterogeneity of trends in temperature extremes.


MAUSAM ◽  
2021 ◽  
Vol 48 (1) ◽  
pp. 55-64
Author(s):  
D.S. PAI

ABSTRACT. Using the monthly outgoing longwave radiation (OLR) data obtained from NOAA polar orbiting satellites, during the period 1979-92, composite OLR anomalies in respect of good monsoon years (1983 and 1988), bad monsoon years (1982 and 1987 for the case associated with ENSO and 1979 and 1986 separately for the case without ENSO) and normal monsoon years (1980, 1981, 1984, 1985, 1989, 1990, 1991 & 1992) were examined. The computation has been performed over the global tropics (30°N-30°S) bounded between the longitudes 50°E and 130°W (through date line) on 5° longitude × 5° latitude grid. There are significant differences in the spatial distributions of composite OLR anomalies between these four cases from the month of April to September indicating spatial and temporal changes in the organized convective pattern. For the good monsoon years persistent negative anomalies indicating enhanced convective activity were observed over the Indonesian regions, whereas large positive anomalies indicating depressed convective activity were observed over equatorial Pacific just west of date line. During the bad monsoon years above normal convection was observed over Pacific region (ENSO case) and over equatorial Indian Ocean (Non ENSO case). During normal monsoon years the spatial patterns of OLR anomalies were similar to that of good monsoon years, but with weaker anomalies. These observations can be explained through the relative interaction between tropical convergence zone (TCZ) over the Indian sub-continent and that over the north Indian Ocean and Pacific. The eastward shift of the convective activity during El-Nino years can be attributed to shift/reversal of Walker circulation. There are strong signals of OLR anomalies during pre-monsoon months which may be useful in inferring the nature of the subsequent monsoon activity.  


Sign in / Sign up

Export Citation Format

Share Document