Comparisons of Scatterometer and TAO Winds Reveal Time-Varying Surface Currents for the Tropical Pacific Ocean*

2005 ◽  
Vol 22 (6) ◽  
pp. 735-745 ◽  
Author(s):  
Kathryn A. Kelly ◽  
Suzanne Dickinson ◽  
Gregory C. Johnson

Abstract The differences between Tropical Atmosphere Ocean (TAO) anemometer and QuikSCAT scatterometer winds are analyzed over a period of 3 yr. Systematic differences are expected owing to ocean currents because the anemometer measures absolute air motion, whereas a radar measures the motion of the air relative to the ocean. Monthly averaged collocated wind differences (CWDs) are compared with available near-surface current data at 15-m depth from drifters, at 25-m depth from acoustic Doppler current profilers (ADCPs), and at 10-m depth from current meters and with geostrophic currents at the surface from the TOPEX/Poseidon radar altimeter. Because direct current observations are so sparse, comparisons are also made with climatological currents from these same sources. Zonal CWDs are in good agreement with the zonal current observations, particularly from 2°S to 2°N where there are strong currents and a robust seasonal cycle, with the altimeter-derived anomalous currents giving the best match. At higher latitudes there is qualitative agreement at buoys with relatively large currents. The overall variance of the zonal component of the CWDs is reduced by approximately 25% by subtracting an estimate of the zonal currents. The meridional CWDs are nearly as large as the zonal CWDs but are unpredictable. The mean CWDs show a robust divergence pattern about the equator, which is suggestive of Ekman currents, but with unexpectedly large magnitudes. Coefficients for estimating climatological zonal surface currents from the altimeter at the TAO buoys are tabulated: the amplitudes and phases for the annual and semiannual harmonics, and a linear regression against the Southern Oscillation index, are combined with the mean from the drifter currents. Examples are shown of the application of these estimators to data from SeaWinds on the Midori satellite. These estimators are also useful for deriving air–sea fluxes from TAO winds.

2021 ◽  
Vol 13 (2) ◽  
pp. 645-669
Author(s):  
Jonathan M. Lilly ◽  
Paula Pérez-Brunius

Abstract. A large set of historical surface drifter data from the Gulf of Mexico – 3770 trajectories spanning 28 years and more than a dozen data sources – are collected, uniformly processed and quality controlled, and assimilated into a spatially and temporally gridded dataset called GulfFlow. This dataset is available in two versions, with 1/4∘ or 1/12∘ spatial resolution respectively, both of which have overlapping monthly temporal bins with semimonthly spacing and which extend from the years 1992 through 2020. Together these form a significant resource for studying the circulation and variability in this important region. The uniformly processed historical drifter data from all publicly available sources, interpolated to hourly resolution, are also distributed in a separate product called GulfDriftersOpen. Forming a mean surface current map by directly bin-averaging the hourly drifter data is found to lead to severe artifacts, a consequence of the extremely inhomogeneous temporal distribution of the drifters. Averaging instead the already monthly-averaged data in GulfFlow avoids these problems, resulting in the highest-resolution map of the mean Gulf of Mexico surface currents yet produced. The consolidated drifter dataset is freely available at https://doi.org/10.5281/zenodo.3985916 (Lilly and Pérez-Brunius, 2021a), while the gridded products are available for noncommercial use only (for reasons discussed herein) at https://doi.org/10.5281/zenodo.3978793 (Lilly and Pérez-Brunius, 2021b).


2018 ◽  
Vol 35 (5) ◽  
pp. 1077-1090 ◽  
Author(s):  
Björn Lund ◽  
Brian K. Haus ◽  
Jochen Horstmann ◽  
Hans C. Graber ◽  
Ruben Carrasco ◽  
...  

AbstractThe Lagrangian Submesoscale Experiment (LASER) involved the deployment of ~1000 biodegradable GPS-tracked Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE) drifters to measure submesoscale upper-ocean currents and their potential impact on oil spills. The experiment was conducted from January to February 2016 in the Gulf of Mexico (GoM) near the mouth of the Mississippi River, an area characterized by strong submesoscale currents. A Helmholtz-Zentrum Geesthacht (HZG) marine X-band radar (MR) on board the R/V F. G. Walton Smith was used to locate fronts and eddies by their sea surface roughness signatures. The MR data were further processed to yield near-surface current maps at ~500-m resolution up to a maximum range of ~3 km. This study employs the drifter measurements to perform the first comprehensive validation of MR near-surface current maps. For a total of 4130 MR–drifter pairs, the root-mean-square error for the current speed is 4 cm and that for the current direction is 12°. The MR samples currents at a greater effective depth than the CARTHE drifters (1–5 m vs ~0.4 m). The mean MR–drifter differences are consistent with a wave- and wind-driven vertical current profile that weakens with increasing depth and rotates clockwise from the wind direction (by 0.7% of the wind speed and 15°). The technique presented here has great potential in observational oceanography, as it allows research vessels to map the horizontal flow structure, complementing the vertical profiles measured by ADCP.


1999 ◽  
Vol 50 (6) ◽  
pp. 483 ◽  
Author(s):  
A. Prytz ◽  
M. L. Heron

HF ocean radar can produce maps of surface current in coastal ocean and estuarine waters by providing coverage in both the space and time dimensions. The deployment of COSRAD in Port Phillip Bay for two successive five-day periods provided hourly values of surface currents over the topographically complex area at the south end of the bay. Analysis of the current data provided tidal ellipses for the validation of numerical models, with resultant residual currents of the order of 0·05 m s–1. The repeated hourly maps were the basis for producing Lagrangian tracks; most tracks resulted in trapped paths which remained for long periods of time in the matrix of channels and sand-banks. A ‘tidal run’ technique was developed to calculate the length of Lagrangian tracks over one phase (ebb or flood) of the main tidal component. All tidal runs were about equal to, or shorter than, the length of the relevant channel; this indicates that tidal forcing is not effective in flushing the bay. In contrast, the observed residual currents can be an effective flushing agent if they persist for three days or longer. It is suggested that phenomena on the scale of meteorological to seasonal forcing are the effective flushing agents for Port Phillip Bay.


The conditions under which an outward-flowing surface current can prevent the passage of waves coming in from the sea are investigated mathematically. Two types of current are considered: ( a ) a current with uniform velocity extending to a depth h ; ( b ) a current with velocity decreasing uniformly and vanishing at depth h . They have very similar effects. The mean velocity required to stop waves of given frequency is rather greater in case ( a ) than in case ( b ). The water current produced by a curtain of air bubbles from a perforated tube on the sea bottom is investigated theoretically on the assumption that the bubbles are very small. Evans (1955) has measured the surface currents produced in a tank by a bubble curtain and finds them smaller than predicted. The discrepancy is partly due to the fact that the bubbles were not very small.


Author(s):  
Xiaoxia Hu ◽  
Ali Dolatabadi ◽  
Kamran Siddiqul

We report on a numerical study conducted to investigate the near-surface flow beneath clean and contaminated small-scale wind-driven water surfaces. The numerical model is validated in terms of the velocity and surface wave characteristics. A good agreement is observed between the experimental and numerical values. The results from the numerical model show that the mean velocity in the near-surface region is 25–50% higher beneath the contaminated surface as compared to the clear surface. The present trend is also in agreement with the previous experimental observations.


2016 ◽  
Vol 37 (3) ◽  
pp. 337-360 ◽  
Author(s):  
Malgorzata Stramska ◽  
Andrzej Jankowski ◽  
Agata Cieszyńska

Abstract We describe surface currents in the Porsanger fjord (Porsangerfjorden) located in the European Arctic in the vicinity of the Barents Sea. Our analysis is based on surface current data collected in the summer of 2014 using High Frequency (WERA, Helzel Messtechnik GmbH) radar system. One of our objectives was to separate out the tidal from the nontidal components of the currents and to determine the most important tidal constituents. Tides in the Porsanger fjord are substantial, with tidal range on the order of about 3 m. Tidal analysis attributes to tides about 99% of variance in sea level time series recorded in Honningsvaag. The most important tidal component in sea level data is the M2 component, with amplitude of ~90 cm. The S2 and N2 constituents (amplitude of ~20 cm) also play a significant role in the semidiurnal sea level oscillations. The most important diurnal component is K1 with amplitude of about 8 cm. The most important tidal component in analyzed surface currents records is the M2 component. The second most important component is the S2. Our results indicate that in contrast to sea level, only about 10-30% of variance in surface currents can be attributed to tidal currents. This means that about 70-90% of variance is due to wind-induced and geostrophic currents.


2019 ◽  
Vol 9 (1) ◽  
pp. 10-20
Author(s):  
Timur İnan ◽  
Ahmet Fevzi BABA

Prediction of sea and weather environment variables like wind speed, wind direction, wave height, wave direction, sea surface current direction and magnitude has always been an important subject in marine engineering as they effect on ship speed and effect the time of arrival to destination point as well. In this study, we propose a neural network that can predict the latitudinal and longitudinal components of sea surface currents in the Aegean Sea. The system can predict the sea surface currents components using the wind components which are gathered from the INMARSAT weather report system. The neural network is trained using the historical data which is gathered from UCAR historical weather database and historical surface current data which is gathered from IFREMER database. Keywords: Sea surface current, weather report, prediction, neural network, big data archive.


2012 ◽  
Vol 3 (1) ◽  
pp. 71-84 ◽  
Author(s):  
V. Sanil Kumar ◽  
G. Udhaba Dora ◽  
C. Sajiv Philip ◽  
P. Pednekar ◽  
Jai Singh

Measured current data at 7 locations and tide data at 3 locations during the pre-summer monsoon period along the west coast of India is used in the study. The surface currents during March showed a predominant northward trend and during April it was towards south. Estimated tidal currents were upto 25 cm s−1 with an average value of 8 cm s−1. Current tidal form number varied from 0.56 to 1 at different locations indicating currents are mixed. M2 and S2 tidal current constituents rotated clock wise at all location. Near surface, the alongshore current was 2.6 to 5.9% of the alongshore wind and near bottom it was 1.9 to 3.6% of the alongshore wind.


2008 ◽  
Vol 38 (5) ◽  
pp. 1107-1121 ◽  
Author(s):  
Yadan Mao ◽  
Malcolm L. Heron

Abstract The momentum transfer from wind to sea generates surface currents through both the wind shear stress and the Stokes drift induced by waves. This paper addresses issues in the interpretation of HF radar measurements of surface currents and momentum transfer from air to sea. Surface current data over a 30-day period from HF ocean surface radar are used to study the response of surface currents to wind. Two periods of relatively constant wind are identified—one for the short-fetch condition and the other for the long-fetch condition. Results suggest that the ratio of surface current speed to wind speed is larger under the long-fetch condition, while the angle between the surface current vector and wind vector is larger under the short-fetch condition. Data analysis shows that the Stokes drift dominates the surface currents under the long-fetch condition when the sea state is more mature, while the Stokes drifts and Ekman-type currents play almost equally important roles in the total currents under the short-fetch condition. The ratios of Stokes drift to wind speed under these two fetch conditions are shown to agree well with results derived from the empirical wave growth function. These results suggest that fetch, and therefore sea state, significantly influences the total response of surface current to wind in both the magnitude and direction by variations in the significance of Stokes drift. Furthermore, this work provides observational evidence that surface currents measured by HF radar include Stokes drift. It demonstrates the potential of HF radar in addressing the issue of momentum transfer from air to sea under various environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document