Wide-Angle Imaging Lidar Deployment at the ARM Southern Great Plains Site: Intercomparison of Cloud Property Retrievals

2005 ◽  
Vol 22 (6) ◽  
pp. 628-648 ◽  
Author(s):  
Igor N. Polonsky ◽  
Steven P. Love ◽  
Anthony B. Davis

Abstract The Wide-Angle Imaging Lidar (WAIL), a new instrument that measures cloud optical and geometrical properties by means of off-beam lidar returns, was deployed as part of a multi-instrument campaign to probe a cloud field at the Atmospheric Radiation Measurement (ARM) Southern Great Plain (SGP) site on 25 March 2002. WAIL is designed to determine physical and geometrical characteristics using the off-beam component of the lidar return that can be adequately modeled within the diffusion approximation. Using WAIL data, the extinction coefficient and geometrical thickness of a dense cloud layer is estimated, from which optical thickness is inferred. Results from the new methodology agree well with counterparts obtained from other instruments located permanently at the SGP ARM site and from the WAIL-like airborne instrument that flew over the site during our observation period.

2005 ◽  
Vol 22 (6) ◽  
pp. 605-627 ◽  
Author(s):  
Robert F. Cahalan ◽  
Matthew McGill ◽  
John Kolasinski ◽  
Tamás Várnai ◽  
Ken Yetzer

Abstract Conventional wisdom is that lidar pulses do not significantly penetrate clouds having an optical thickness exceeding about τ = 2, and that no returns are detectible from more than a shallow skin depth. Yet optically thicker clouds of τ ≫ 2 reflect a larger fraction of visible photons and account for much of the earth’s global average albedo. As cloud-layer thickness grows, an increasing fraction of reflected photons are scattered multiple times within the cloud and return from a diffuse concentric halo that grows around the incident pulse, increasing in horizontal area with layer physical thickness. The reflected halo is largely undetected by narrow field-of-view (FOV) receivers commonly used in lidar applications. Cloud Thickness from Offbeam Returns (THOR) is an airborne wide-angle detection system with multiple FOVs, capable of observing the diffuse halo as a wide-angle signal, from which the physical thickness of optically thick clouds can be retrieved. This paper describes the THOR system, demonstrates that the halo signal is stronger for thicker clouds, and presents a validation of physical thickness retrievals for clouds having τ > 20, from NASA’s P-3B flights over the Department of Energy’s Atmospheric Radiation Measurement Southern Great Plains site, using the lidar, radar, and other ancillary ground-based data.


2013 ◽  
Vol 26 (24) ◽  
pp. 10031-10050 ◽  
Author(s):  
Arunchandra S. Chandra ◽  
Pavlos Kollias ◽  
Bruce A. Albrecht

Abstract A long data record (14 yr) of ground-based observations at the Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) site is analyzed to document the macroscopic and dynamical properties of daytime fair-weather cumulus clouds during summer months. First, a fuzzy logic–based algorithm is developed to eliminate insect radar echoes in the boundary layer that hinder the ability to develop representative cloud statistics. The refined dataset is used to document the daytime composites of fair-weather cumulus clouds properties. Doppler velocities are processed for lower reflectivity thresholds that contain small cloud droplets having insignificant terminal velocities; thus, Doppler velocities are used as tracers of air motion. The algorithm is implemented to process the entire 14-yr dataset of cloud radar vertical velocity data. Composite diurnal variations of the cloud vertical velocity statistics, surface parameters, and profiles of updraft and downdraft fractions, bulk velocity of updrafts and downdrafts, and updraft and downdraft mass flux are calculated. Statistics on the cloud geometrical properties such as cloud thickness, cloud chord length, cloud spacing, and aspect ratios are calculated on the cloud scale. The present dataset provides a unique insight into the daytime evolution and statistical description of the turbulent structure inside fair-weather cumuli over land.


2021 ◽  
Vol 14 (4) ◽  
pp. 3033-3048
Author(s):  
David D. Turner ◽  
Ulrich Löhnert

Abstract. Thermodynamic profiles in the planetary boundary layer (PBL) are important observations for a range of atmospheric research and operational needs. These profiles can be retrieved from passively sensed spectral infrared (IR) or microwave (MW) radiance observations or can be more directly measured by active remote sensors such as water vapor differential absorption lidars (DIALs). This paper explores the synergy of combining ground-based IR, MW, and DIAL observations using an optimal-estimation retrieval framework, quantifying the reduction in the uncertainty in the retrieved profiles and the increase in information content as additional observations are added to IR-only and MW-only retrievals. This study uses ground-based observations collected during the Perdigão field campaign in central Portugal in 2017 and during the DIAL demonstration campaign at the Atmospheric Radiation Measurement Southern Great Plains site in 2017. The results show that the information content in both temperature and water vapor is higher for the IR instrument relative to the MW instrument (thereby resulting in smaller uncertainties) and that the combined IR + MW retrieval is very similar to the IR-only retrieval below 1.5 km. However, including the partial profile of water vapor observed by the DIAL increases the information content in the combined IR + DIAL and MW + DIAL water vapor retrievals substantially, with the exact impact vertically depending on the characteristics of the DIAL instrument itself. Furthermore, there is a slight increase in the information content in the retrieved temperature profile using the IR + DIAL relative to the IR-only; this was not observed in the MW + DIAL retrieval.


2020 ◽  
Vol 20 (6) ◽  
pp. 3483-3501 ◽  
Author(s):  
Xiaojian Zheng ◽  
Baike Xi ◽  
Xiquan Dong ◽  
Timothy Logan ◽  
Yuan Wang ◽  
...  

Abstract. The aerosol indirect effect on cloud microphysical and radiative properties is one of the largest uncertainties in climate simulations. In order to investigate the aerosol–cloud interactions, a total of 16 low-level stratus cloud cases under daytime coupled boundary-layer conditions are selected over the southern Great Plains (SGP) region of the United States. The physicochemical properties of aerosols and their impacts on cloud microphysical properties are examined using data collected from the Department of Energy Atmospheric Radiation Measurement (ARM) facility at the SGP site. The aerosol–cloud interaction index (ACIr) is used to quantify the aerosol impacts with respect to cloud-droplet effective radius. The mean value of ACIr calculated from all selected samples is 0.145±0.05 and ranges from 0.09 to 0.24 at a range of cloud liquid water paths (LWPs; LWP=20–300 g m−2). The magnitude of ACIr decreases with an increasing LWP, which suggests a diminished cloud microphysical response to aerosol loading, presumably due to enhanced condensational growth processes and enlarged particle sizes. The impact of aerosols with different light-absorbing abilities on the sensitivity of cloud microphysical responses is also investigated. In the presence of weak light-absorbing aerosols, the low-level clouds feature a higher number concentration of cloud condensation nuclei (NCCN) and smaller effective radii (re), while the opposite is true for strong light-absorbing aerosols. Furthermore, the mean activation ratio of aerosols to CCN (NCCN∕Na) for weakly (strongly) absorbing aerosols is 0.54 (0.45), owing to the aerosol microphysical effects, particularly the different aerosol compositions inferred by their absorptive properties. In terms of the sensitivity of cloud-droplet number concentration (Nd) to NCCN, the fraction of CCN that converted to cloud droplets (Nd∕NCCN) for the weakly (strongly) absorptive regime is 0.69 (0.54). The measured ACIr values in the weakly absorptive regime are relatively higher, indicating that clouds have greater microphysical responses to aerosols, owing to the favorable thermodynamic condition. The reduced ACIr values in the strongly absorptive regime are due to the cloud-layer heating effect induced by strong light-absorbing aerosols. Consequently, we expect larger shortwave radiative cooling effects from clouds in the weakly absorptive regime than those in the strongly absorptive regime.


2013 ◽  
Vol 13 (6) ◽  
pp. 3205-3225 ◽  
Author(s):  
S. S. Kulawik ◽  
J. R. Worden ◽  
S. C. Wofsy ◽  
S. C. Biraud ◽  
R. Nassar ◽  
...  

Abstract. Thermal infrared radiances from the Tropospheric Emission Spectrometer (TES) between 10 and 15 μm contain significant carbon dioxide (CO2) information, however the CO2 signal must be separated from radiative interference from temperature, surface and cloud parameters, water, and other trace gases. Validation requires data sources spanning the range of TES CO2 sensitivity, which is approximately 2.5 to 12 km with peak sensitivity at about 5 km and the range of TES observations in latitude (40° S to 40° N) and time (2005–2011). We therefore characterize Tropospheric Emission Spectrometer (TES) CO2 version 5 biases and errors through comparisons to ocean and land-based aircraft profiles and to the CarbonTracker assimilation system. We compare to ocean profiles from the first three Hiaper Pole-to-Pole Observations (HIPPO) campaigns between 40° S and 40° N with measurements between the surface and 14 km and find that TES CO2 estimates capture the seasonal and latitudinal gradients observed by HIPPO CO2 measurements. Actual errors range from 0.8–1.8 ppm, depending on the campaign and pressure level, and are approximately 1.6–2 times larger than the predicted errors. The bias of TES versus HIPPO is within 1 ppm for all pressures and datasets; however, several of the sub-tropical TES CO2 estimates are lower than expected based on the calculated errors. Comparisons to land aircraft profiles from the United States Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) between 2005 and 2011 measured from the surface to 5 km to TES CO2 show good agreement with an overall bias of −0.3 ppm to 0.1 ppm and standard deviations of 0.8 to 1.0 ppm at different pressure levels. Extending the SGP aircraft profiles above 5 km using AIRS or CONTRAIL measurements improves comparisons with TES. Comparisons to CarbonTracker (version CT2011) show a persistent spatially dependent bias pattern and comparisons to SGP show a time-dependent bias of −0.2 ppm yr−1. We also find that the predicted sensitivity of the TES CO2 estimates is too high, which results from using a multi-step retrieval for CO2 and temperature. We find that the averaging kernel in the TES product corrected by a pressure-dependent factor accurately reflects the sensitivity of the TES CO2 product.


Sign in / Sign up

Export Citation Format

Share Document