scholarly journals Design of the AmeriFlux Portable Eddy Covariance System and Uncertainty Analysis of Carbon Measurements

2007 ◽  
Vol 24 (8) ◽  
pp. 1389-1406 ◽  
Author(s):  
T. W. Ocheltree ◽  
H. W. Loescher

Abstract The AmeriFlux network continues to improve the understanding of carbon, water, and energy fluxes across temporal and spatial scales. The network includes ∼120 research sites that contribute to the understanding of processes within and among ecosystems. To improve the networks ability and confidence to synthesize data across multiple sites, the AmeriFlux quality assurance and quality control laboratory was established to reduce the within- and among-site uncertainties. This paper outlines the design of the portable eddy covariance system (PECS) and subsequent data processing procedures used for site comparisons. Because the PECS makes precision measurements of atmospheric CO2, the authors also present the results of uncertainty analyses in determining the polynomials for an infrared gas analyzer, estimating the CO2 in secondary standards, and estimating ambient CO2 in field measurements. Under field conditions, drift in the measurement of CO2 increased the uncertainty in flux measurements across 7 days by 5% and was not dependent on the magnitude or direction of the flux. The maximum relative flux measurement error for unstable conditions was 10.03 μmol CO2 m−2 s−1.

2012 ◽  
Vol 5 (7) ◽  
pp. 1699-1717 ◽  
Author(s):  
S. Metzger ◽  
W. Junkermann ◽  
M. Mauder ◽  
F. Beyrich ◽  
K. Butterbach-Bahl ◽  
...  

Abstract. The objective of this study is to assess the feasibility and quality of eddy-covariance flux measurements from a weight-shift microlight aircraft (WSMA). Firstly, we investigate the precision of the wind measurement (σu,v ≤ 0.09 m s−1, σw = 0.04 m s−1), the lynchpin of flux calculations from aircraft. From here, the smallest resolvable changes in friction velocity (0.02 m s−1), and sensible- (5 W m−2) and latent (3 W m−2) heat flux are estimated. Secondly, a seven-day flight campaign was performed near Lindenberg (Germany). Here we compare measurements of wind, temperature, humidity and respective fluxes between a tall tower and the WSMA. The maximum likelihood functional relationship (MLFR) between tower and WSMA measurements considers the random error in the data, and shows very good agreement of the scalar averages. The MLFRs for standard deviations (SDs, 2–34%) and fluxes (17–21%) indicate higher estimates of the airborne measurements compared to the tower. Considering the 99.5% confidence intervals, the observed differences are not significant, with exception of the temperature SD. The comparison with a large-aperture scintillometer reveals lower sensible heat flux estimates at both tower (−40 to −25%) and WSMA (−25–0%). We relate the observed differences to (i) inconsistencies in the temperature and wind measurement at the tower and (ii) the measurement platforms' differing abilities to capture contributions from non-propagating eddies. These findings encourage the use of WSMA as a low cost and highly versatile flux measurement platform.


2014 ◽  
Vol 13 (4) ◽  
pp. 405-424 ◽  
Author(s):  
Daniele Masseroni ◽  
Arianna Facchi ◽  
Marco Romani ◽  
Enrico Antonio Chiaradia ◽  
Olfa Gharsallah ◽  
...  

2020 ◽  
Author(s):  
Justus van Ramshorst ◽  
Christian Markwitz ◽  
Timothy Hill ◽  
Robert Clement ◽  
Alexander Knohl ◽  
...  

<p>Agroforestry is a combination of monoculture agriculture and trees. Studies of net ecosystem exchange of CO<sub>2</sub> (NEE) of agroforestry systems are rare, in comparison to the extensive studies of NEE of agricultural systems (croplands and grasslands). Agroforestry has been shown to alter the microclimate, productivity, and nutrient and water usage – as compared to standard agricultural practise. The, potentially, higher carbon sequestration of agroforestry, relative to monoculture systems, provides an interesting option for mitigating climate change, highlighting the need for improved study of agroforestry systems. The current study, as part of the SIGNAL (sustainable intensification of agriculture through agroforestry) project, investigates NEE of agroforestry compared to that of monoculture agriculture. The study employs paired comparisons of flux measurements above agroforestry and monoculture agronomy, replicated at five locations across Germany. Fluxes are measured, using innovative low-cost CO<sub>2</sub> eddy covariance sensors (slow response Vaisala GMP343 IRGA with custom made housing), which have been successfully used in a study over grassland. Continuous data series from mid-summer until winter 2019 show that both systems acted as a sink with comparable fluxes during summer. The diurnal CO<sub>2</sub> cycle and the response to management activities are distinguishable and in autumn preliminary results suggest a small difference in fluxes between the two systems. The low-cost eddy covariance system is able to capture the turbulence and to measure the CO<sub>2</sub> flux over the agroforestry and monoculture agricultural system. We aim to further improve the quality of the CO<sub>2</sub> fluxes, by adapting post-processing software to better estimate the difference in carbon uptake between the agroforestry and monoculture systems.</p>


2009 ◽  
Vol 9 (19) ◽  
pp. 7325-7342 ◽  
Author(s):  
E. Velasco ◽  
S. Pressley ◽  
R. Grivicke ◽  
E. Allwine ◽  
T. Coons ◽  
...  

Abstract. Eddy covariance (EC) flux measurements of the atmosphere/surface exchange of gases over an urban area are a direct way to improve and evaluate emissions inventories, and, in turn, to better understand urban atmospheric chemistry and the role that cities play in regional and global chemical cycles. As part of the MCMA-2003 study, we demonstrated the feasibility of using eddy covariance techniques to measure fluxes of selected volatile organic compounds (VOCs) and CO2 from a residential district of Mexico City (Velasco et al., 2005a, b). During the MILAGRO/MCMA-2006 field campaign, a second flux measurement study was conducted in a different district of Mexico City to corroborate the 2003 flux measurements, to expand the number of species measured, and to obtain additional data for evaluation of the local emissions inventory. Fluxes of CO2 and olefins were measured by the conventional EC technique using an open path CO2 sensor and a Fast Isoprene Sensor calibrated with a propylene standard. In addition, fluxes of toluene, benzene, methanol and C2-benzenes were measured using a virtual disjunct EC method with a Proton Transfer Reaction Mass Spectrometer. The flux measurements were analyzed in terms of diurnal patterns and vehicular activity and were compared with the most recent gridded local emissions inventory. In both studies, the results showed that the urban surface of Mexico City is a net source of CO2 and VOCs with significant contributions from vehicular traffic. Evaporative emissions from commercial and other anthropogenic activities were significant sources of toluene and methanol. The results show that the emissions inventory is in reasonable agreement with measured olefin and CO2 fluxes, while C2-benzenes and toluene emissions from evaporative sources are overestimated in the inventory. It appears that methanol emissions from mobile sources occur, but are not reported in the mobile emissions inventory.


2019 ◽  
Vol 11 (3) ◽  
pp. 273 ◽  
Author(s):  
Caroline Nichol ◽  
Guillaume Drolet ◽  
Albert Porcar-Castell ◽  
Tom Wade ◽  
Neus Sabater ◽  
...  

Solar induced chlorophyll fluorescence has been shown to be increasingly an useful proxy for the estimation of gross primary productivity (GPP), at a range of spatial scales. Here, we explore the seasonality in a continuous time series of canopy solar induced fluorescence (hereafter SiF) and its relation to canopy gross primary production (GPP), canopy light use efficiency (LUE), and direct estimates of leaf level photochemical efficiency in an evergreen canopy. SiF was calculated using infilling in two bands from the incoming and reflected radiance using a pair of Ocean Optics USB2000+ spectrometers operated in a dual field of view mode, sampling at a 30 min time step using custom written automated software, from early spring through until autumn in 2011. The optical system was mounted on a tower of 18 m height adjacent to an eddy covariance system, to observe a boreal forest ecosystem dominated by Scots pine. (Pinus sylvestris) A Walz MONITORING-PAM, multi fluorimeter system, was simultaneously mounted within the canopy adjacent to the footprint sampled by the optical system. Following correction of the SiF data for O2 and structural effects, SiF, SiF yield, LUE, the photochemicsl reflectance index (PRI), and the normalized difference vegetation index (NDVI) exhibited a seasonal pattern that followed GPP sampled by the eddy covariance system. Due to the complexities of solar azimuth and zenith angle (SZA) over the season on the SiF signal, correlations between SiF, SiF yield, GPP, and LUE were assessed on SZA <50° and under strictly clear sky conditions. Correlations found, even under these screened scenarios, resulted around ~r2 = 0.3. The diurnal responses of SiF, SiF yield, PAM estimates of effective quantum yield (ΔF/Fm′), and meteorological parameters demonstrated some agreement over the diurnal cycle. The challenges inherent in SiF retrievals in boreal evergreen ecosystems are discussed.


2012 ◽  
Vol 5 (2) ◽  
pp. 2591-2643 ◽  
Author(s):  
S. Metzger ◽  
W. Junkermann ◽  
M. Mauder ◽  
F. Beyrich ◽  
K. Butterbach-Bahl ◽  
...  

Abstract. The objective of this study is to assess the feasibility and quality of Eddy-Covariance flux measurements from a weight-shift microlight aircraft (WSMA). Firstly we investigate the precision of the wind measurement (σu,v≤ 0.09 m s−1, σw = 0.04 m s−1), the lynchpin of flux calculations from aircraft. From here the smallest resolvable changes in friction velocity (0.02 m s−1), and sensible- (5 W m−2) and latent (3 W m−2) heat flux are estimated. Secondly a seven-day flight campaign was performed near Lindenberg (Germany). Here we compare measurements of wind, temperature, humidity and respective fluxes between a tall tower and the WSMA. The maximum likelihood functional relationship (MLFR) between tower and WSMA measurements considers the random error in the data, and shows very good agreement of the scalar averages. The MLFRs for standard deviations (SDs, 2–34%) and fluxes (17–21%) indicate higher estimates of the airborne measurements compared to the tower. Considering the 99.5% confidence intervals the observed differences are not significant, with exception of the temperature SD. The comparison with a large-aperture scintillometer reveals lower sensible heat flux estimates at both, tower (−40–−25%) and WSMA (−25–0%). We relate the observed differences to (i) inconsistencies in the temperature and wind measurement at the tower and (ii) the measurement platforms differing abilities to capture contributions from non-propagating eddies. These findings encourage the use of WSMA as a low price and highly versatile flux measurement platform.


2012 ◽  
Vol 516-517 ◽  
pp. 910-916
Author(s):  
Jing Bao ◽  
Lei Zhang ◽  
Xian Jie Cao ◽  
Jie Ning Liang ◽  
Jin Wang

To understand the spatial representation of flux measurement of the eddy covariance system in the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL), footprint was analyzed during representative seasons (summer and winter) from March 2007 to February 2011 by FSAM (Flux Source Area Model). The results indicated that wind direction and atmospheric stability have important effect on footprint. 1) The analysis at different wind directions showed that the location of the maximum footprint function (Xm) in winter was farther from the observation point than that in summer; the source area was the largest in SW, and smallest in NW in both summer and winter; the source area in summer was bigger than that in winter at all directions except for NE. 2) The analysis under different atmospheric stabilities showed that Xmwas the farthest from the observation point under stable condition and nearest under unstable condition; the source area was the largest under stable condition and smallest under unstable condition; the source area in summer was bigger than that in winter under all atmospheric stabilities. 3) Moreover, the results showed that the flux measurements of SACOL were representative of two types of topography: flat terrain and mountain terrain.


2015 ◽  
Vol 8 (5) ◽  
pp. 4711-4736
Author(s):  
J. B. Wu ◽  
X. Y. Zhou ◽  
A. Z. Wang ◽  
F. H. Yuan

Abstract. Eddy covariance using infrared gas analyses has been a useful tool for gas exchange measurements between soil, vegetation and atmosphere. So far, comparisons between the open- and closed-path eddy covariance (CP) system have been extensively made on CO2 flux estimations, while lacking in the comparison of water vapor flux estimations. In this study, the specific performance of water vapor flux measurements of an open-path eddy covariance (OP) system was compared against a CP system over a tall temperate forest in Northeast China. The results show that the fluxes from the OP system (LEop) were generally greater than the (LEcp though the two systems shared one sonic anemometer. The tube delay of closed-path analyser depended on relative humidity, and the fixed median time lag contributed to a significant underestimation of (LEcp between the forest and atmosphere, while slight systematic overestimation was also found for covariance maximization method with single broad time lag search window. After the optimized time lag compensation was made, the average difference between the 30 min (LEop and (LEcp was generally within 6%. Integrated over the annual cycle, the CP system yielded a 5.1% underestimation of forest evapotranspiration as compared to the OP system measurements (493 vs. 469 mm yr−1). This study indicates the importance to estimate the sampling tube delay accurately for water vapor flux calculations with closed-path analysers, and it also suggests that when discuss the energy balance closure problem in flux sites with closed-path eddy covariance systems, it has to be aware that some of the imbalance is possibly caused by the systematic underestimation of water vapor fluxes.


2009 ◽  
Vol 9 (2) ◽  
pp. 7991-8034 ◽  
Author(s):  
E. Velasco ◽  
S. Pressley ◽  
R. Grivicke ◽  
E. Allwine ◽  
T. Coons ◽  
...  

Abstract. Eddy covariance (EC) flux measurements of the atmosphere/surface exchange of gases over an urban area are a direct way to improve and evaluate emissions inventories, and, in turn, to better understand urban atmospheric chemistry and the role that cities play in regional and global chemical cycles. As part of the MCMA-2003 study, we demonstrated the feasibility of using eddy covariance techniques to measure fluxes of selected volatile organic compounds (VOCs) and CO2 from a residential district of Mexico City (Velasco et al., 2005a, b). During the MILAGRO/MCMA-2006 field campaign, a second flux measurement study was conducted in a different district of Mexico City to corroborate the 2003 flux measurements, to expand the number of species measured, and to obtain additional data for evaluation of the local emissions inventory. Fluxes of CO2 and olefins were measured by the conventional EC technique using an open path CO2 sensor and a Fast Isoprene Sensor calibrated with a propylene standard. In addition, fluxes of toluene, benzene, methanol and C2-benzenes were measured using a virtual disjunct EC method with a Proton Transfer Reaction Mass Spectrometer. The flux measurements were analyzed in terms of diurnal patterns and vehicular activity and were compared with the most recent gridded emissions inventory. In both studies, the results showed that the urban surface of Mexico City is a net source of CO2 and VOCs with significant contributions from vehicular traffic. Evaporative emissions from commercial and other anthropogenic activities were significant sources of toluene and methanol. The data show that the emissions inventory is in reasonable agreement with measured olefin and CO2 fluxes, while C2-benzenes and toluene emissions from evaporative sources are overestimated in the inventory. It appears that methanol emissions from mobile sources occur, but are not present in the mobile emissions inventory.


2018 ◽  
Vol 40 ◽  
pp. 93
Author(s):  
Ivan Mauricio Cely Toro ◽  
Ricardo Acosta Gotuzzo ◽  
Débora Regina Roberti ◽  
Jackson Ernani Fiorin

Two models for footprint calculations are compared employing flux measurements in the planetary boundary layer. The calculationsare based on the analytical models by Kormann e Meixner (2001) [An analytical footprint model for non-neutral stratification.Boundary-Layer Meteorology 99, 207–224] and by Schuepp et al. (1990) [Footprint prediction of scalar fluxes from analytical solutions of the difussion equation. Boundary-Layer Meteorology 50, 355-373]. The footprint density functions of a flux sensor are determined using eddy-covariance data. Those functions are integrated over surfaces given by quadrangular rectangles, in this case an agricultural field. This work ilustrates the features of each footprint model employing flux measurements with an eddy-covariance system of the SULFLUX network, installed on a agricultural field. Finally, it is presented the model that describes in a better way the flux measurements in small fields.


Sign in / Sign up

Export Citation Format

Share Document