scholarly journals A 10-yr Climatology of Diabatic Rossby Waves in the Northern Hemisphere

2013 ◽  
Vol 141 (3) ◽  
pp. 1139-1154 ◽  
Author(s):  
Maxi Boettcher ◽  
Heini Wernli

Abstract Diabatic Rossby waves (DRWs) are low-tropospheric positive potential vorticity (PV) anomalies in moist and sufficiently baroclinic regions. They regenerate continuously by moist-diabatic processes and potentially develop into explosively intensifying cyclones. In this study a specific DRW-tracking algorithm is developed and applied to operational ECMWF analyses to compile a first climatology of DRWs in the Northern Hemisphere for the years 2001–10. DRWs are more frequent over the North Pacific than over the North Atlantic with on average 81 and 43 systems per year, respectively. Less than 15% of these systems intensify explosively, on average 12 per year over the Pacific and 5 over the Atlantic. DRWs are most frequent in summer but most of the explosively intensifying DRWs occur in autumn and winter. DRWs are generated typically between 30°–50°N over the eastern parts of the continents and the western/central parts of the oceans. They propagate fairly zonally along the midlatitude baroclinic zone. The generation of the initial low-tropospheric PV anomalies goes along with precipitation processes in characteristic flow patterns, which correspond to 1) flow around the subtropical high against the midlatitude baroclinic zone, 2) flow induced by an upper-level cutoff or a (tropical) cyclone against the baroclinic zone, 3) upper-level trough-induced ascent at the baroclinic zone, and 4) PV remnants of a tropical cyclone or a mesoscale convective system that are advected into the baroclinic zone where they start propagating as a DRW. In most cases, explosive intensification of DRWs occurs through interaction with a preexisting upper-level trough.

2009 ◽  
Vol 137 (6) ◽  
pp. 1972-1990 ◽  
Author(s):  
Stanley B. Trier ◽  
Robert D. Sharman

Abstract Widespread moderate turbulence was recorded on three specially equipped commercial airline flights over northern Kansas near the northern edge of the extensive cirrus anvil of a nocturnal mesoscale convective system (MCS) on 17 June 2005. A noteworthy aspect of the turbulence was its location several hundred kilometers from the active deep convection (i.e., large reflectivity) regions of the MCS. Herein, the MCS life cycle and the turbulence environment in its upper-level outflow are studied using Rapid Update Cycle (RUC) analyses and cloud-permitting simulations with the Weather Research and Forecast Model (WRF). It is demonstrated that strong vertical shear beneath the MCS outflow jet is critical to providing an environment that could support dynamic (e.g., shearing type) instabilities conducive to turbulence. Comparison of a control simulation to one in which the temperature tendency due to latent heating was eliminated indicates that strong vertical shear and corresponding reductions in the local Richardson number (Ri) to ∼0.25 at the northern edge of the anvil were almost entirely a consequence of the MCS-induced westerly outflow jet. The large vertical shear is found to decrease Ri both directly, and by contributing to reductions in static stability near the northern anvil edge through differential advection of (equivalent) potential temperature gradients, which are in turn influenced by adiabatic cooling associated with the mesoscale updraft located upstream within the anvil. On the south side of the MCS, the vertical shear associated with easterly outflow was significantly offset by environmental westerly shear, which resulted in larger Ri and less widespread model turbulent kinetic energy (TKE) than at the northern anvil edge.


2019 ◽  
Vol 148 (1) ◽  
pp. 289-311 ◽  
Author(s):  
Adam Varble ◽  
Hugh Morrison ◽  
Edward Zipser

Abstract Simulations of a squall line observed on 20 May 2011 during the Midlatitude Continental Convective Clouds Experiment (MC3E) using 750- and 250-m horizontal grid spacing are performed. The higher-resolution simulation has less upshear-tilted deep convection and a more elevated rear inflow jet than the coarser-resolution simulation in better agreement with radar observations. A stronger cold pool eventually develops in the 250-m run; however, the more elevated rear inflow counteracts the cold pool circulation to produce more upright convective cores relative to the 750-m run. The differing structure in the 750-m run produces excessive midlevel front-to-rear detrainment, reinforcing excessive latent cooling and rear inflow descent at the rear of the stratiform region in a positive feedback. The contrasting mesoscale circulations are connected to early stage deep convective draft differences in the two simulations. Convective downdraft condensate mass, latent cooling, and downward motion all increase with downdraft area similarly in both simulations. However, the 750-m run has a relatively greater number of wide and fewer narrow downdrafts than the 250-m run averaged to the same 750-m grid, a consequence of downdrafts being under-resolved in the 750-m run. Under-resolved downdrafts in the 750-m run are associated with under-resolved updrafts and transport mid–upper-level zonal momentum downward to low levels too efficiently in the early stage deep convection. These results imply that under-resolved convective drafts in simulations may vertically transport air too efficiently and too far vertically, potentially biasing buoyancy and momentum distributions that impact mesoscale convective system evolution.


2013 ◽  
Vol 70 (12) ◽  
pp. 3799-3817 ◽  
Author(s):  
Stefan F. Cecelski ◽  
Da-Lin Zhang

Abstract While a robust theoretical framework for tropical cyclogenesis (TCG) within African easterly waves (AEWs) has recently been developed, little work explores the development of low-level meso-β-scale vortices (LLVs) and a meso-α-scale surface low in relation to deep convection and upper-tropospheric warming. In this study, the development of an LLV into Hurricane Julia (2010) is shown through a high-resolution model simulation with the finest grid size of 1 km. The results presented expand upon the connections between LLVs and the AEW presented in previous studies while demonstrating the importance of upper-tropospheric warming for TCG. It is found that the significant intensification phase of Hurricane Julia is triggered by the pronounced upper-tropospheric warming associated with organized deep convection. The warming is able to intensify and expand during TCG owing to formation of a storm-scale outflow beyond the Rossby radius of deformation. Results confirm previous ideas by demonstrating that the intersection of the AEW's trough axis and critical latitude is a preferred location for TCG, while supplementing such work by illustrating the importance of upper-tropospheric warming and meso-α-scale surface pressure falls during TCG. It is shown that the meso-β-scale surface low enhances boundary layer convergence and aids in the bottom-up vorticity development of the meso-β-scale LLV. The upper-level warming is attributed to heating within convective bursts at earlier TCG stages while compensating subsidence warming becomes more prevalent once a mesoscale convective system develops.


2008 ◽  
Vol 136 (8) ◽  
pp. 3087-3105 ◽  
Author(s):  
Vagner Anabor ◽  
David J. Stensrud ◽  
Osvaldo L. L. de Moraes

Abstract Serial mesoscale convective system (MCS) events with lifetimes over 18 h and up to nearly 70 h are routinely observed over southeastern South America from infrared satellite imagery during the spring and summer. These events begin over the southern La Plata River basin, with individual convective systems generally moving eastward with the cloud-layer-mean wind. However, an important and common subset of these serial MCS events shows individual MCSs moving to the east or southeast, yet the region of convective development as a whole shifts upstream to the north or northwest. Analyses of the composite mean environments from 10 of these upstream-propagating serial MCS events using NCEP–NCAR reanalysis data events indicates that the synoptic conditions resemble those found in mesoscale convective complex environments over the United States. The serial MCS events form within an environment of strong low-level warm advection and strong moisture advection between the surface and 700 hPa from the Amazon region southward. One feature that appears to particularly influence the low-level flow pattern at early times is a strong surface anticyclone located just off the coast of Brazil. At upper levels, the MCSs develop on the anticyclonic side of the entrance region to an upper-level jet. Mean soundings show that the atmosphere is moist from the surface to near 500 hPa, with values of convective available potential energy above 1200 J kg−1 at the time of system initiation. System dissipation and continued upstream propagation to the north and northwest occurs in tandem with a surface high pressure system that crosses the Andes Mountains from the west.


2006 ◽  
Vol 63 (1) ◽  
pp. 268-287 ◽  
Author(s):  
G. M. Heymsfield ◽  
Joanne Simpson ◽  
J. Halverson ◽  
L. Tian ◽  
E. Ritchie ◽  
...  

Abstract Tropical Storm Chantal during August 2001 was a storm that failed to intensify over the few days prior to making landfall on the Yucatan Peninsula. An observational study of Tropical Storm Chantal is presented using a diverse dataset including remote and in situ measurements from the NASA ER-2 and DC-8 and the NOAA WP-3D N42RF aircraft and satellite. The authors discuss the storm structure from the larger-scale environment down to the convective scale. Large vertical shear (850–200-hPa shear magnitude range 8–15 m s−1) plays a very important role in preventing Chantal from intensifying. The storm had a poorly defined vortex that only extended up to 5–6-km altitude, and an adjacent intense convective region that comprised a mesoscale convective system (MCS). The entire low-level circulation center was in the rain-free western side of the storm, about 80 km to the west-southwest of the MCS. The MCS appears to have been primarily the result of intense convergence between large-scale, low-level easterly flow with embedded downdrafts, and the cyclonic vortex flow. The individual cells in the MCS such as cell 2 during the period of the observations were extremely intense, with reflectivity core diameters of 10 km and peak updrafts exceeding 20 m s−1. Associated with this MCS were two broad subsidence (warm) regions, both of which had portions over the vortex. The first layer near 700 hPa was directly above the vortex and covered most of it. The second layer near 500 hPa was along the forward and right flanks of cell 2 and undercut the anvil divergence region above. There was not much resemblance of these subsidence layers to typical upper-level warm cores in hurricanes that are necessary to support strong surface winds and a low central pressure. The observations are compared to previous studies of weakly sheared storms and modeling studies of shear effects and intensification. The configuration of the convective updrafts, low-level circulation, and lack of vertical coherence between the upper- and lower-level warming regions likely inhibited intensification of Chantal. This configuration is consistent with modeled vortices in sheared environments, which suggest the strongest convection and rain in the downshear left quadrant of the storm, and subsidence in the upshear right quadrant. The vertical shear profile is, however, different from what was assumed in previous modeling in that the winds are strongest in the lowest levels and the deep tropospheric vertical shear is on the order of 10–12 m s−1.


2019 ◽  
Vol 147 (12) ◽  
pp. 4567-4588 ◽  
Author(s):  
Dragana Zovko-Rajak ◽  
Todd P. Lane ◽  
Robert D. Sharman ◽  
Stanley B. Trier

Abstract An observed turbulence encounter that occurred outside a mesoscale convective system over the central United States on 3 June 2005 is investigated using observations and high-resolution numerical modeling. Here, the mechanisms associated with the observed moderate-to-severe turbulence during the evolution of this convective system are examined. Comparison between aircraft-observed eddy dissipation rate data with satellite and radar shows that a majority of turbulence reports are located on the south side and outside of a nocturnal mesoscale convective system (MCS), relatively large distances from the active convective regions. Simulations show that divergent storm-induced upper-level outflow reduces the environmental flow on the south side of the MCS, while on the north and northwest side it enhances the environmental flow. This upper-level storm outflow enhances the vertical shear near the flight levels and contributes to mesoscale reductions in Richardson number to values that support turbulence. In addition to the role of the MCS-induced outflow, high-resolution simulations (1.1-km horizontal grid spacing) show that turbulence is largely associated with a large-amplitude gravity wave generated by the convective system, which propagates away from it. As the wave propagates in the region with enhanced vertical shear caused by the storm-induced upper-level outflow, it amplifies, overturns, and breaks down into turbulence. The location of the simulated turbulence relative to the storm agrees with the observations and the analysis herein provides insight into the key processes underlying this event.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Ajeet K. Maurya ◽  
Navin Parihar ◽  
Adarsh Dube ◽  
Rajesh Singh ◽  
Sushil Kumar ◽  
...  

AbstractWe report rare simultaneous observations of columniform sprites and associated gravity waves (GWs) using the Transient Luminous Events (TLEs) camera and All-sky imager at Prayagraj (25.5° N, 81.9° E, geomag. lat. ~ 16.5° N), India. On 30 May 2014, a Mesoscale Convective System generated a group of sprites over the north horizon that reached the upper mesosphere. Just before this event, GWs (period ~ 14 min) were seen in OH broadband airglow (emission peak ~ 87 km) imaging that propagated in the direction of the sprite occurrence and dissipated in the background atmosphere thereby generating turbulence. About 9–14 min after the sprite event, another set of GWs (period ~ 11 min) was observed in OH imaging that arrived from the direction of the TLEs. At this site, we also record Very Low Frequency navigational transmitter signal JJI (22.2 kHz) from Japan. The amplitude of the JJI signal showed the presence of GWs with ~ 12.2 min periodicities and ~ 18 min period. The GWs of similar features were observed in the ionospheric Total Electron Content variations recorded at a nearby GPS site. The results presented here are important to understand the physical coupling of the troposphere with the lower and upper ionosphere through GWs.


2017 ◽  
Vol 145 (3) ◽  
pp. 811-832 ◽  
Author(s):  
Caleb T. Grunzke ◽  
Clark Evans

The predictability and dynamics of the warm-core mesovortex associated with the northern flank of the 8 May 2009 “super derecho” event are examined by coupling the Advanced Research Weather Research and Forecasting Model with the ensemble adjustment Kalman filter implementation within the Data Assimilation Research Testbed facility. Cycled analysis started at 1200 UTC 2 May 2009, with observations assimilated every 6 h until 1200 UTC 7 May 2009, at which time a 50-member ensemble of 36-h convection-allowing ensemble forecasts were launched. The ensemble forecasts all simulated a mesoscale convective system, but only 7 out of 50 members produced a warm-core mesovortex-like feature similar in intensity to the observed mesovortex. Ensemble sensitivity and composite analyses were conducted to analyze the environmental differences between ensemble members. A more amplified upstream upper-level trough near the time of observed convection initiation is associated with a stronger simulated mesovortex. The amplification of the trough results in increases in the magnitudes of the low-level jet and thermal gradient. Consequently, more moisture is transported poleward into western Kansas, leading to earlier convection initiation in ensemble members with the strongest mesovortices. A circulation budget is performed on the ensemble members with the strongest (member 10) and weakest (member 5) time-averaged circulations. The ascending front-to-rear flow, descending rear-to-front flow, and divergent low-level flow of an MCS are more prominent in member 10, which is hypothesized to allow for the convergence of more background cyclonic absolute vorticity and, thus, facilitating the development of a stronger mesovortex.


2017 ◽  
Vol 145 (6) ◽  
pp. 2257-2279 ◽  
Author(s):  
Bryan J. Putnam ◽  
Ming Xue ◽  
Youngsun Jung ◽  
Nathan A. Snook ◽  
Guifu Zhang

Abstract Ensemble-based probabilistic forecasts are performed for a mesoscale convective system (MCS) that occurred over Oklahoma on 8–9 May 2007, initialized from ensemble Kalman filter analyses using multinetwork radar data and different microphysics schemes. Two experiments are conducted, using either a single-moment or double-moment microphysics scheme during the 1-h-long assimilation period and in subsequent 3-h ensemble forecasts. Qualitative and quantitative verifications are performed on the ensemble forecasts, including probabilistic skill scores. The predicted dual-polarization (dual-pol) radar variables and their probabilistic forecasts are also evaluated against available dual-pol radar observations, and discussed in relation to predicted microphysical states and structures. Evaluation of predicted reflectivity (Z) fields shows that the double-moment ensemble predicts the precipitation coverage of the leading convective line and stratiform precipitation regions of the MCS with higher probabilities throughout the forecast period compared to the single-moment ensemble. In terms of the simulated differential reflectivity (ZDR) and specific differential phase (KDP) fields, the double-moment ensemble compares more realistically to the observations and better distinguishes the stratiform and convective precipitation regions. The ZDR from individual ensemble members indicates better raindrop size sorting along the leading convective line in the double-moment ensemble. Various commonly used ensemble forecast verification methods are examined for the prediction of dual-pol variables. The results demonstrate the challenges associated with verifying predicted dual-pol fields that can vary significantly in value over small distances. Several microphysics biases are noted with the help of simulated dual-pol variables, such as substantial overprediction of KDP values in the single-moment ensemble.


Sign in / Sign up

Export Citation Format

Share Document