scholarly journals Serial Upstream-Propagating Mesoscale Convective System Events over Southeastern South America

2008 ◽  
Vol 136 (8) ◽  
pp. 3087-3105 ◽  
Author(s):  
Vagner Anabor ◽  
David J. Stensrud ◽  
Osvaldo L. L. de Moraes

Abstract Serial mesoscale convective system (MCS) events with lifetimes over 18 h and up to nearly 70 h are routinely observed over southeastern South America from infrared satellite imagery during the spring and summer. These events begin over the southern La Plata River basin, with individual convective systems generally moving eastward with the cloud-layer-mean wind. However, an important and common subset of these serial MCS events shows individual MCSs moving to the east or southeast, yet the region of convective development as a whole shifts upstream to the north or northwest. Analyses of the composite mean environments from 10 of these upstream-propagating serial MCS events using NCEP–NCAR reanalysis data events indicates that the synoptic conditions resemble those found in mesoscale convective complex environments over the United States. The serial MCS events form within an environment of strong low-level warm advection and strong moisture advection between the surface and 700 hPa from the Amazon region southward. One feature that appears to particularly influence the low-level flow pattern at early times is a strong surface anticyclone located just off the coast of Brazil. At upper levels, the MCSs develop on the anticyclonic side of the entrance region to an upper-level jet. Mean soundings show that the atmosphere is moist from the surface to near 500 hPa, with values of convective available potential energy above 1200 J kg−1 at the time of system initiation. System dissipation and continued upstream propagation to the north and northwest occurs in tandem with a surface high pressure system that crosses the Andes Mountains from the west.

2017 ◽  
Vol 145 (9) ◽  
pp. 3599-3624 ◽  
Author(s):  
John M. Peters ◽  
Erik R. Nielsen ◽  
Matthew D. Parker ◽  
Stacey M. Hitchcock ◽  
Russ S. Schumacher

This article investigates errors in forecasts of the environment near an elevated mesoscale convective system (MCS) in Iowa on 24–25 June 2015 during the Plains Elevated Convection at Night (PECAN) field campaign. The eastern flank of this MCS produced an outflow boundary (OFB) and moved southeastward along this OFB as a squall line. The western flank of the MCS remained quasi stationary approximately 100 km north of the system’s OFB and produced localized flooding. A total of 16 radiosondes were launched near the MCS’s eastern flank and 4 were launched near the MCS’s western flank. Convective available potential energy (CAPE) increased and convective inhibition (CIN) decreased substantially in observations during the 4 h prior to the arrival of the squall line. In contrast, the model analyses and forecasts substantially underpredicted CAPE and overpredicted CIN owing to their underrepresentation of moisture. Numerical simulations that placed the MCS at varying distances too far to the northeast were analyzed. MCS displacement error was strongly correlated with models’ underrepresentation of low-level moisture and their associated overrepresentation of the vertical distance between a parcel’s initial height and its level of free convection ([Formula: see text], which is correlated with CIN). The overpredicted [Formula: see text] in models resulted in air parcels requiring unrealistically far northeastward travel in a region of gradual meso- α-scale lift before these parcels initiated convection. These results suggest that erroneous MCS predictions by NWP models may sometimes result from poorly analyzed low-level moisture fields.


2012 ◽  
Vol 27 (6) ◽  
pp. 1326-1348 ◽  
Author(s):  
Brian A. Colle ◽  
Kelly A. Lombardo ◽  
Jeffrey S. Tongue ◽  
William Goodman ◽  
Nelson Vaz

Abstract This paper describes the climatology of tornadoes around New York City (NYC) and Long Island (LI), New York, and the structural evolution of two tornadic events that affected NYC on 8 August 2007 and 16 September 2010. Nearly half (18 of 34 events from 1950 to 2010) of NYC–LI tornadoes developed between 0500 and 1300 EDT, and August is the peak tornado month as compared to July for most of the northeast United States. A spatial composite highlights the approaching midlevel trough, moderate most unstable convective available potential energy (MUCAPE), and frontogenesis along a low-level baroclinic zone. Shortly before the early morning tornadoes on 8 August 2007, a mesoscale convective system intensified in the lee of the Appalachians in a region of low-level frontogenesis and moderate MUCAPE (~1500 J kg−1). Warm advection at low levels and evaporative cooling within an elevated mixed layer (EML) ahead of the mesoscale convective system (MCS) helped steepen the low-level lapse rates. Meanwhile, a surface mesolow along a quasi-stationary frontal zone enhanced the warm advection and low-level shear. The late afternoon event on 16 September 2010 was characterized by a quasi-linear convective system (QLCS) that also featured an EML aloft, a surface mesolow just west of NYC, low-level frontogenesis, and a southerly low-level jet ahead of an approaching midlevel trough. The QLCS intensified approaching NYC and generated mesovortices as the QLCS bowed outward. These cases illustrate the benefit of high-density surface observations, terminal Doppler radars, and sounding profiles from commercial aircraft for nowcasting these events.


2009 ◽  
Vol 137 (7) ◽  
pp. 2144-2163 ◽  
Author(s):  
Vagner Anabor ◽  
David J. Stensrud ◽  
Osvaldo L. L. de Moraes

Serial upstream-propagating mesoscale convective system (MCS) events over southeastern South America are important contributors to the local hydrologic cycle as they can provide roughly half of the total monthly summer precipitation. However, the mechanisms of upstream propagation for these events have not been explored. To remedy this situation, a numerical simulation of the composite environmental conditions from 10 observed serial MCS events is conducted. Results indicate that the 3-day simulation from the composite yields a reasonable evolution of the large-scale environment and produces a large region of organized convection in the warm sector over an extended period as seen in observations. Upstream propagation of the convective region is produced and is tied initially to the development and evolution of untrapped internal gravity waves. However, as convective downdrafts develop and begin to merge and form a surface cold pool in the simulation, the cold pool and its interaction with the environmental low-level flow also begins to play a role in convective evolution. While the internal gravity waves and cold pool interact over a several hour period to control the convective development, the cold pool eventually dominates and determines the propagation of the convective region by the end of the simulation. This upstream propagation of a South American convective region resembles the southward burst convective events described over the United States and highlights the complex interactions and feedbacks that challenge accurate forecasts of convective system evolution.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 384
Author(s):  
John R. Lawson ◽  
William A. Gallus ◽  
Corey K. Potvin

The bow echo, a mesoscale convective system (MCS) responsible for much hail and wind damage across the United States, is associated with poor skill in convection-allowing numerical model forecasts. Given the decrease in convection-allowing grid spacings within many operational forecasting systems, we investigate the effect of finer resolution on the character of bowing-MCS development in a real-data numerical simulation. Two ensembles were generated: one with a single domain of 3-km horizontal grid spacing, and another nesting a 1-km domain with two-way feedback. Ensemble members were generated from their control member with a stochastic kinetic-energy backscatter scheme, with identical initial and lateral-boundary conditions. Results suggest that resolution reduces hindcast skill of this MCS, as measured with an adaptation of the object-based Structure–Amplitude–Location method. The nested 1-km ensemble produces a faster system than in both the 3-km ensemble and observations. The nested 1-km simulation also produced stronger cold pools, which could be enhanced by the increased (fractal) cloud surface area with higher resolution, allowing more entrainment of dry air and hence increased evaporative cooling.


2011 ◽  
Vol 139 (8) ◽  
pp. 2367-2385 ◽  
Author(s):  
Hsiao-Wei Lai ◽  
Christopher A. Davis ◽  
Ben Jong-Dao Jou

AbstractThis study examines a subtropical oceanic mesoscale convective vortex (MCV) that occurred from 1800 UTC 4 June to 1200 UTC 6 June 2008 during intensive observing period (IOP) 6 of the Southwest Monsoon Experiment (SoWMEX) and the Terrain-influenced Monsoon Rainfall Experiment (TiMREX). A dissipating mesoscale convective system reorganized within a nearly barotropic vorticity strip, which formed as a southwesterly low-level jet developed to the south of subsiding easterly flow over the southern Taiwan Strait. A cyclonic circulation was revealed on the northern edge of the mesoscale rainband with a horizontal scale of 200 km. An inner subvortex, on a scale of 25–30 km with maximum shear vorticity of 3 × 10−3 s−1, was embedded in the stronger convection. The vortex-relative southerly flow helped create local potential instability favorable for downshear convection enhancement. Strong low-level convergence suggests that stretching occurred within the MCV. Higher θe air, associated with significant potential and conditional instability, and high reflectivity signatures near the vortex center suggest that deep moist convection was responsible for the vortex stretching. Dry rear inflow penetrated into the MCV and suppressed convection in the upshear direction. A mesolow was also roughly observed within the larger vortex. The presence of intense vertical wind shear in the higher troposphere limited the vortex vertical extent to about 6 km.


2010 ◽  
Vol 23 (6) ◽  
pp. 1477-1494 ◽  
Author(s):  
Kerry H. Cook ◽  
Edward K. Vizy

Abstract The easterly Caribbean low-level jet (CLLJ) is a prominent climate feature over the Intra-America Seas, and it is associated with much of the water vapor transport from the tropical Atlantic into the Caribbean Basin. In this study, the North American Regional Reanalysis (NARR) is analyzed to improve the understanding of the dynamics of the CLLJ and its relationship to regional rainfall variations. Horizontal momentum balances are examined to understand how jet variations on both diurnal and seasonal time scales are controlled. The jet is geostrophic to the first order. Its previously documented semidiurnal cycle (with minima at about 0400 and 1600 LT) is caused by semidiurnal cycling of the meridional geopotential height gradient in association with changes in the westward extension of the North Atlantic subtropical high (NASH). A diurnal cycle is superimposed, associated with a meridional land–sea breeze (solenoidal circulation) onto the north coast of South America, so that the weakest jet velocities occur at 1600 LT. The CLLJ is present throughout the year, and it is known to vary in strength semiannually. Peak magnitudes in July are related to the seasonal cycle of the NASH, and a second maximum in February is caused by heating over northern South America. From May through September, zonal geopotential gradients associated with summer heating over Central America and Mexico induce meridional flow. The CLLJ splits into two branches, including a southerly branch that connects with the Great Plains low-level jet (GPLLJ) bringing moisture into the central United States. During the rest of the year, the flow remains essentially zonal across the Caribbean Basin and into the Pacific. A strong (weak) CLLJ is associated with reduced (enhanced) rainfall over the Caribbean Sea throughout the year in the NARR. The relationship with precipitation over land depends on the season. Despite the fact that the southerly branch of the CLLJ feeds into the meridional GPLLJ in May through September, variations in the CLLJ strength during these months do not impact U.S. precipitation, because the CLLJ strength is varying in response to regional-scale forcing and not to changes in the large-scale circulation. During the cool season, there are statistically significant correlations between the CLLJ index and rainfall over the United States. When the CLLJ is strong, there is anomalous northward moisture transport across the Gulf of Mexico into the central United States and pronounced rainfall increases over Louisiana and Texas. A weak jet is associated with anomalous westerly flow across the southern Caribbean region and significantly reduced rainfall over the south-central United States. No connection between the intensity of the CLLJ and drought over the central United States is found. There are only three drought summers in the NARR period (1980, 1988, and 2006), and the CLLJ was extremely weak in 1988 but not in 1980 or 2006.


2006 ◽  
Vol 7 ◽  
pp. 153-156 ◽  
Author(s):  
J. M. Sánchez-Laulhé

Abstract. This paper describes the evolution of a mesoscale convective system (MCS) developed over the Alboran Sea on 7 February 2005, using surface, upper-air stations, radar and satellite observations, and also data from an operational numerical model. The system developed during the night as a small convective storm line in an environment with slight convective instability, low precipitable water and strong low-level vertical wind shear near coast. The linear MCS moved northwards reaching the Spanish coast. Then it remained trapped along the coast for more than twelve hours, following the coast more than five hundred kilometres. The MCS here described had a fundamental orographic character due to: (1) the generation of a low-level storm inflow parallel to the coast, formed by blocking of the onshore flow by coastal mountains and (2) the orientation of both the mesoscale ascent from the sea towards the coastal mountains and the midlevel rear inflow from the coastal mountains to the sea. The main motivation of this work was to obtain a better understanding of the mechanisms relevant to the formation of heavy rainfall episodes occurring at Spanish Mediterranean coast associated with this kind of stationary or slowly moving MCSs.


2015 ◽  
Vol 72 (6) ◽  
pp. 2507-2524 ◽  
Author(s):  
Russ S. Schumacher

Abstract Using a method for initiating a quasi-stationary, heavy-rain-producing elevated mesoscale convective system in an idealized numerical modeling framework, a series of experiments is conducted in which a shallow layer of drier air is introduced within the near-surface stable layer. The environment is still very moist in the experiments, with changes to the column-integrated water vapor of only 0.3%–1%. The timing and general evolution of the simulated convective systems are very similar, but rainfall accumulation at the surface is changed by a much larger fraction than the reduction in moisture, with point precipitation maxima reduced by up to 29% and domain-averaged precipitation accumulations reduced by up to 15%. The differences in precipitation are partially attributed to increases in the evaporation rate in the shallow subcloud layer, though this is found to be a secondary effect. More importantly, even though the near-surface layer has strong convective inhibition in all simulations and the convective available potential energy of the most unstable parcels is unchanged, convection is less intense in the experiments with drier subcloud layers because less air originating in that layer rises in convective updrafts. An additional experiment with a cooler near-surface layer corroborates these findings. The results from these experiments suggest that convective systems assumed to be elevated are, in fact, drawing air from near the surface unless the low levels are very stable. Considering that the moisture differences imposed here are comparable to observational uncertainties in low-level temperature and moisture, the strong sensitivity of accumulated precipitation to these quantities has implications for the predictability of extreme rainfall.


2015 ◽  
Vol 72 (11) ◽  
pp. 4319-4336 ◽  
Author(s):  
Mitchell W. Moncrieff ◽  
Todd P. Lane

Abstract Part II of this study of long-lived convective systems in a tropical environment focuses on forward-tilted, downshear-propagating systems that emerge spontaneously from idealized numerical simulations. These systems differ in important ways from the standard mesoscale convective system that is characterized by a rearward-tilted circulation with a trailing stratiform region, an overturning updraft, and a mesoscale downdraft. In contrast to this standard mesoscale system, the downshear-propagating system considered here does not feature a mesoscale downdraft and, although there is a cold pool it is of secondary importance to the propagation and maintenance of the system. The mesoscale downdraft is replaced by hydraulic-jump-like ascent beneath an elevated, forward-tilted overturning updraft with negligible convective available potential energy. Therefore, the mesoscale circulation is sustained almost entirely by the work done by the horizontal pressure gradient and the kinetic energy available from environmental shear. This category of organization is examined by cloud-system-resolving simulations and approximated by a nonlinear archetypal model of the quasi-steady Lagrangian-mean mesoscale circulation.


2012 ◽  
Vol 69 (11) ◽  
pp. 3372-3390 ◽  
Author(s):  
Alexander D. Schenkman ◽  
Ming Xue ◽  
Alan Shapiro

Abstract The Advanced Regional Prediction System (ARPS) is used to simulate a tornadic mesovortex with the aim of understanding the associated tornadogenesis processes. The mesovortex was one of two tornadic mesovortices spawned by a mesoscale convective system (MCS) that traversed southwestern and central Oklahoma on 8–9 May 2007. The simulation used 100-m horizontal grid spacing, and is nested within two outer grids with 400-m and 2-km grid spacing, respectively. Both outer grids assimilate radar, upper-air, and surface observations via 5-min three-dimensional variational data assimilation (3DVAR) cycles. The 100-m grid is initialized from a 40-min forecast on the 400-m grid. Results from the 100-m simulation provide a detailed picture of the development of a mesovortex that produces a submesovortex-scale tornado-like vortex (TLV). Closer examination of the genesis of the TLV suggests that a strong low-level updraft is critical in converging and amplifying vertical vorticity associated with the mesovortex. Vertical cross sections and backward trajectory analyses from this low-level updraft reveal that the updraft is the upward branch of a strong rotor that forms just northwest of the simulated TLV. The horizontal vorticity in this rotor originates in the near-surface inflow and is caused by surface friction. An additional simulation with surface friction turned off does not produce a rotor, strong low-level updraft, or TLV. Comparison with previous two-dimensional numerical studies of rotors in the lee of mountains shows striking similarities to the rotor formation presented herein. The findings of this study are summarized in a four-stage conceptual model for tornadogenesis in this case that describes the evolution of the event from mesovortexgenesis through rotor development and finally TLV genesis and intensification.


Sign in / Sign up

Export Citation Format

Share Document