scholarly journals A New Parametric Tropical Cyclone Tangential Wind Profile Model

2013 ◽  
Vol 141 (6) ◽  
pp. 1884-1909 ◽  
Author(s):  
Vincent T. Wood ◽  
Luther W. White ◽  
Hugh E. Willoughby ◽  
David P. Jorgensen

Abstract A new parametric tropical cyclone (TC) wind profile model is presented for depicting representative surface pressure profiles corresponding to multiple-maxima wind profiles that exhibit single-, dual-, and triple-maximum concentric-eyewall wind peaks associated with the primary (inner), secondary (first outer), and tertiary (second outer) complete rings of enhanced radar reflectivity. One profile employs five key parameters: tangential velocity maximum, radius of the maximum, and three different shape velocity parameters related to the shape of the profile. After tailoring the model for TC applications, a gradient wind is computed from a cyclostrophic wind formulated in terms of the cyclostrophic Rossby number. A pressure, via cyclostrophic balance, was partitioned into separate pressure components that corresponded to multiple-maxima cyclostrophic wind profiles in order to quantitatively evaluate the significant fluctuations in central pressure deficits. The model TC intensity in terms of varying growth, size, and decay velocity profiles was analyzed in relation to changing each of five key parameters. Analytical results show that the first shape velocity parameter, changing a sharply to broadly peaked wind profile, increases the TC intensity and size by producing the corresponding central pressure fall. An increase (decrease) in the second (third) shape velocity parameter yields the pressure rise (fall) by decreasing (increasing) the inner (outer) wind profile inside (outside) the radius of the maximum. When a single-maximum tangential wind profile evolves to multiple-maxima tangential wind profiles during an eye replacement cycle, the pressure falls and rises are sensitively fluctuated.

2013 ◽  
Vol 30 (12) ◽  
pp. 2850-2867 ◽  
Author(s):  
Vincent T. Wood ◽  
Luther W. White

Abstract A parametric tangential wind profile model is presented for depicting representative pressure deficit profiles corresponding to varying tangential wind profiles of a cyclostrophic, axisymmetric vortex. The model employs five key parameters per wind profile: tangential velocity maximum, radius of the maximum, and three shape parameters that control different portions of the profile. The model coupled with the cyclostrophic balance assumption offers a diagnostic tool for estimating and examining a radial profile of pressure deficit deduced from a theoretical superimposing tangential wind profile in the vortex. Analytical results show that the shape parameters for a given tangential wind maximum of a non-Rankine vortex have an important modulating influence on the behavior of realistic tangential wind and corresponding pressure deficit profiles. The first parameter designed for changing the wind profile from sharply to broadly peaked produces the corresponding central pressure fall. An increase in the second (third) parameter yields the pressure rise by lowering the inner (outer) wind profile inside (outside) the radius of the maximum. Compared to the Rankine vortex, the parametrically constructed non-Rankine vortices have a larger central pressure deficit. It is suggested that the parametric model of non-Rankine vortex tangential winds has good potential for diagnosing the pressure features arising in dust devils, waterspouts, tornadoes, tornado cyclones, and mesocyclones. Finally, presented are two examples in which the parametric model is fitted to a tangential velocity profile, one derived from an idealized numerical simulation and the other derived from high-resolution Doppler radar data collected in a real tornado.


2013 ◽  
Vol 13 (10) ◽  
pp. 26795-26840
Author(s):  
L. L. Lussier ◽  
M. T. Montgomery ◽  
M. M. Bell

Abstract. Aircraft reconnaissance data collected during the Tropical Cyclone Structure 2008 field campaign are used to examine further kinematical, dynamical and thermodynamical aspects of the genesis of Typhoon Nuri. Data from the first two missions into the pre-Nuri disturbance document the transition from a tropical wave to a tropical depression. Dropwindsonde-derived tangential wind profiles at several radii from the low-level circulation center indicate that the magnitude of low-level circulation increases and that the corresponding tangential velocity maximum moves inward from the first to second reconnaissance mission. To compliment these findings, a three-dimensional variational analysis incorporating both dropwindsonde and aircraft Doppler radar data is conducted. These data are used to perform circulation tendency calculations at multiple distances from the low-level circulation center. The results demonstrate a net spin-up of the system-scale circulation in the low-levels near the center and in the outer regions of the recirculating Kelvin cat's eye circulation. In these regions, the spin-up tendency due to the influx of cyclonic absolute vorticity exceeds the frictional spin-down tendency for both Nuri missions. The system-scale spin up is found to be accompanied by areas of low-level vorticity concentration through vortex-tube stretching associated with cumulus convection. The areal coverage and intensity of these high-vorticity regions increase between the first and second Nuri missions. The findings of this study are consistent in some respects to the Nuri observational analysis carried out by Raymond and Lopez (2011), but differ in their suggested key result and related scientific implication that the pre-Nuri disturbance was spinning down on the first day of observations. The findings herein strongly support a recent tropical cyclogenesis model positing that the Kelvin cat's eye circulation of the parent wave-like disturbance provides a favorable environment for convective-vorticity organization and low-level spin-up on the mesoscale.


2014 ◽  
Vol 14 (16) ◽  
pp. 8795-8812 ◽  
Author(s):  
L. L. Lussier III ◽  
M. T. Montgomery ◽  
M. M. Bell

Abstract. Aircraft reconnaissance data collected during the Tropical Cyclone Structure 2008 field campaign are used to examine further kinematical, dynamical, and thermodynamical aspects of the genesis of Typhoon Nuri. Data from the first two missions into the pre-Nuri disturbance document the transition from a tropical wave to a tropical depression. Dropwindsonde-derived tangential wind profiles at several radii from the low-level circulation center indicate that the magnitude of low-level circulation increases and that the corresponding tangential velocity maximum moves inward from the first to second reconnaissance mission. To compliment these findings, a three-dimensional variational analysis incorporating both dropwindsonde and aircraft Doppler radar data is conducted. These data are used to perform circulation tendency calculations at multiple distances from the low-level circulation center. The results demonstrate a net spin-up of the system-scale circulation in the low levels near the center and in the outer regions of the recirculating Kelvin cat's eye circulation. In these regions, the spin-up tendency due to the influx of cyclonic absolute vorticity exceeds the frictional spin-down tendency for both Nuri missions. The system-scale spin-up is found to be accompanied by areas of low-level vorticity concentration through vortex-tube stretching associated with cumulus convection. The areal coverage and intensity of these high-vorticity regions increase between the first and second Nuri missions. The findings of this study are consistent in some respects to the Nuri observational analysis carried out by Raymond and López-Carrillo (2011), but differ in their suggested key results and related scientific implications that the pre-Nuri disturbance was spinning down in the planetary boundary layer on the first day of observations. The findings herein strongly support a recent tropical cyclogenesis model positing that the Kelvin cat's eye circulation of the parent wave-like disturbance provides a favorable environment for convective vorticity organization and low-level spin-up on the mesoscale.


2017 ◽  
Vol 74 (12) ◽  
pp. 4275-4286 ◽  
Author(s):  
Daniel P. Stern ◽  
Jonathan L. Vigh ◽  
David S. Nolan ◽  
Fuqing Zhang

Abstract In their comment, Kieu and Zhang critique the recent study of Stern et al. that examined the contraction of the radius of maximum wind (RMW) and its relationship to tropical cyclone intensification. Stern et al. derived a diagnostic expression for the rate of contraction and used this to show that while RMW contraction begins and accelerates as a result of an increasing negative radial gradient of tangential wind tendency inward of the RMW, contraction slows down and eventually ceases as a result of the increasing sharpness of the wind profile around the RMW during intensification. Kieu and Zhang claim that this kinematic framework does not yield useful understanding, that Stern et al. are mistaken in their favorable comparison of this framework to earlier work by Willoughby et al., and that Stern et al. are mistaken in their conclusion that an equation for the contraction of the RMW derived by Kieu is erroneous. This reply demonstrates that each of these claims by Kieu and Zhang is incorrect.


2011 ◽  
Vol 26 (6) ◽  
pp. 1020-1031 ◽  
Author(s):  
John A. Knaff ◽  
Charles R. Sampson ◽  
Patrick J. Fitzpatrick ◽  
Yi Jin ◽  
Christopher M. Hill

Abstract In 1980 the Holland tropical cyclone (TC) wind profile model was introduced. This simple model was originally intended to estimate the wind profile based on limited surface pressure information alone. For this reason and its relative simplicity, the model has been used in many practical applications. In this paper the potential of a simplified version of the Holland B parameter, which is related to the shape of the tangential wind profile, is explored as a powerful diagnostic tool for monitoring TC structure. The implementation examined is based on the limited information (maximum wind, central pressure, radius and pressure of the outer closed isobar, radii of operationally important wind radii, etc.) that is typically available in operational models and routine analyses of TC structure. This “simplified Holland B” parameter is shown to be sensitive to TC intensity, TC size, and the rate of radial decay of the tangential winds, but relatively insensitive to the radius of maximum winds. A climatology of the simplified Holland B parameter based on historical best-track data is also developed and presented, providing the expected natural ranges of variability. The relative simplicity, predictable variability, and desirable properties of the simplified Holland B parameter make it ideal for a variety of applications. Examples of how the simplified Holland B parameter can be used for improving forecaster guidance, developing TC structure tools, diagnosing TC model output, and understanding and comparing the climatological variations of TC structure are presented.


2011 ◽  
Vol 68 (5) ◽  
pp. 990-1006 ◽  
Author(s):  
Vincent T. Wood ◽  
Luther W. White

Abstract A new parametric model of vortex tangential-wind profiles is presented that is primarily designed to depict realistic-looking tangential wind profiles such as those in intense atmospheric vortices arising in dust devils, waterspouts, tornadoes, mesocyclones, and tropical cyclones. The profile employs five key parameters: maximum tangential wind, radius of maximum tangential wind, and three power-law exponents that shape different portions of the velocity profile. In particular, a new parameter is included controlling the broadly or sharply peaked profile in the annular zone of tangential velocity maximum. Different combinations of varying the model parameters are considered to investigate and understand their effects on the physical behaviors of tangential wind and corresponding vertical vorticity profiles. Additionally, the parametric tangential velocity and vorticity profiles are favorably compared to those of an idealized Rankine model and also those of a theoretical stagnant core vortex model in which no tangential velocity exists within a core boundary and a potential flow occurs outside the core. Furthermore, the parametric profiles are evaluated against and compared to those of two other idealized vortex models (Burgers–Rott and Sullivan). The comparative profiles indicate very good agreements with low root-mean-square errors of a few tenths of a meter per second and high correlation coefficients of nearly one. Thus, the veracity of the parametric model is demonstrated.


2019 ◽  
Author(s):  
Kees Nederhoff ◽  
Alessio Giardino ◽  
Maarten van Ormondt ◽  
Deepak Vatvani

Abstract. Parametric wind profiles are commonly applied in a number of engineering applications for the generation of tropical cyclone (TC) wind and pressure fields. Nevertheless, existing formulations for computing wind fields often lack the required accuracy when the TC geometry is not known. This may affect the accuracy of the computed impacts generated by these winds. In this paper, empirical stochastic relationships are derived to describe two important parameters affecting the TC geometry: radius of maximum winds (RMW) and the radius of gale force winds (∆AR35). These relationships are formulated using best track data (BTD) for all seven ocean basins (Atlantic, S/NW/NE Pacific, N/SW/SE Indian Oceans). This makes it possible to a) estimate RMW and ∆AR35 when these properties are not known and b) generate improved parametric wind fields for all oceanic basins. Validation results show how the proposed relationships allow the TC geometry to be represented with higher accuracy than when using relationships available from the literature. Outer wind speeds can be well reproduced by the commonly used Holland wind profile when calibrated using information either from best-track-data or from the proposed relationships. The scripts to compute the TC geometry and the outer wind speed are freely available via Delft Dashboard.


2019 ◽  
Vol 19 (11) ◽  
pp. 2359-2370 ◽  
Author(s):  
Kees Nederhoff ◽  
Alessio Giardino ◽  
Maarten van Ormondt ◽  
Deepak Vatvani

Abstract. Parametric wind profiles are commonly applied in a number of engineering applications for the generation of tropical cyclone (TC) wind and pressure fields. Nevertheless, existing formulations for computing wind fields often lack the required accuracy when the TC geometry is not known. This may affect the accuracy of the computed impacts generated by these winds. In this paper, empirical stochastic relationships are derived to describe two important parameters affecting the TC geometry: radius of maximum winds (RMW) and the radius of gale-force winds (ΔAR35). These relationships are formulated using best-track data (BTD) for all seven ocean basins (Atlantic; S, NW, and NE Pacific; and N, SW, and SE Indian oceans). This makes it possible to (a) estimate RMW and ΔAR35 when these properties are not known and (b) generate improved parametric wind fields for all oceanic basins. Validation results show how the proposed relationships allow the TC geometry to be represented with higher accuracy than when using relationships available from literature. Outer wind speeds can be reproduced well by the commonly used Holland wind profile when calibrated using information either from best-track data or from the proposed relationships. The scripts to compute the TC geometry and the outer wind speed are freely available via the following URL: https://bit.ly/2k9py1J (last access: October 2019).


2014 ◽  
Vol 142 (11) ◽  
pp. 4326-4339 ◽  
Author(s):  
Leon T. Nguyen ◽  
John Molinari ◽  
Diana Thomas

Abstract Identifying the center of a tropical cyclone in a high-resolution model simulation has a number of operational and research applications, including constructing a track, calculating azimuthal means and perturbations, and diagnosing vortex tilt. This study evaluated several tropical cyclone center identification methods in a high-resolution Weather Research and Forecasting (WRF) Model simulation of a sheared, intensifying, asymmetric tropical cyclone. The simulated tropical cyclone (TC) contained downshear convective cells and a mesovortex embedded in a broader TC vortex, complicating the identification of the TC vortex center. It is shown that unlike other methods, the pressure centroid method consistently 1) placed the TC center within the region of weak storm-relative wind, 2) produced a smooth track, 3) yielded a vortex tilt that varied smoothly in magnitude and direction, and 4) was insensitive to changes in horizontal grid resolution. Based on these results, the authors recommend using the pressure centroid to define the TC center in high-resolution numerical models. The pressure centroid was calculated within a circular region representing the size of the TC inner core. To determine this area, the authors propose normalizing by the innermost radius at which the azimuthally averaged storm-relative tangential wind at 2-km height equals 80% of the maximum (R80) at 2-km height. Although compositing studies have often normalized by the radius of maximum wind (RMW), R80 proved less sensitive to slight changes in flat tangential wind profiles. This enables R80 to be used as a normalization technique not only with intense TCs having peaked tangential wind profiles, but also with weaker TCs having flatter tangential wind profiles.


Author(s):  
Thore Bastian Lindemann ◽  
Jens Friedrichs ◽  
Udo Stark

For a competitive low pressure axial fan design low noise emission is as important as high efficiency. In this paper a new design method for low pressure fans with a small hub to tip ratio including blade sweep is introduced and discussed based on experimental investigations. Basis is an empirical axial and tangential velocity distribution at the rotor outlet combined with a distinctive sweep angle distribution along the stacking line. Several fans were designed, built and tested in order to analyze the aerodynamic as well as the aeroacoustic behavior. For the aerodynamic performance particular attention was paid to compensate the influence of reduced pressure rise and efficiency due to increasing blade sweep. This was achieved by a method of increasing the blade chord depending on the local sweep angle which is based on single airfoil data. The tested fans without this compensation revealed a significant noise reduction effect of up to approx. 6 dB(A) for a tip sweep angle of 64° which was accompanied by an unsatisfactory effect of reduced overall aerodynamic performance. The second group of fans did not only confirm the method of the aerodynamic compensation by a nearly unchanged pressure rise and efficiency characteristic but also revealed an increased aeroacoustic benefit of in average 9.5 dB(A) compared to the unswept version. Beside the overall characteristics the individual differences between the designs are also discussed using results of wall pressure measurements which show some significant changes of the blade tip flow structure.


Sign in / Sign up

Export Citation Format

Share Document