Surface Wind and Upper-Ocean Variability Associated with the Madden–Julian Oscillation Simulated by the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS)

2013 ◽  
Vol 141 (7) ◽  
pp. 2290-2307 ◽  
Author(s):  
Toshiaki Shinoda ◽  
Tommy G. Jensen ◽  
Maria Flatau ◽  
Sue Chen

Abstract Simulation of surface wind and upper-ocean variability associated with the Madden–Julian oscillation (MJO) by a regional coupled model, the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS), is evaluated by the comparison with in situ and satellite observations. COAMPS is configured for the tropical Indian Ocean domain with the horizontal resolution of 27 km for the atmospheric component and ⅛° for the ocean component. A high-resolution nested grid (9 km) for the atmospheric component is used for the central Indian Ocean. While observational data are assimilated into the atmospheric component, no data are assimilated into the ocean component. The model was integrated during 1 March–30 April 2009 when an active episode of large-scale convection associated with the MJO passed eastward across the Indian Ocean. During this MJO event, strong surface westerly winds (~8 m s−1) were observed in the central equatorial Indian Ocean, and they generated a strong eastward jet (~1 m s−1) on the equator. COAMPS can realistically simulate these surface wind and upper-ocean variations. The sensitivity of upper-ocean variability to the atmospheric model resolution is examined by the COAMPS experiment without the high-resolution nested grid. The equatorial jet generated in this experiment is about 20% weaker than that in the first experiment, which significantly influences upper-ocean salinity and temperature. The large diurnal warming of SST during the suppressed phase of the MJO is also adequately simulated by the model. Weak winds during this period are mostly responsible for the large SST diurnal variation based on the comparison with the spatial variation of surface forcing fields.

2001 ◽  
Vol 28 (21) ◽  
pp. 4151-4154 ◽  
Author(s):  
Ming Feng ◽  
Gary Meyers ◽  
Susan Wijffels

2009 ◽  
Vol 22 (7) ◽  
pp. 1850-1858 ◽  
Author(s):  
Jin-Yi Yu ◽  
Fengpeng Sun ◽  
Hsun-Ying Kao

Abstract The Community Climate System Model, version 3 (CCSM3), is known to produce many aspects of El Niño–Southern Oscillation (ENSO) realistically, but the simulated ENSO exhibits an overly strong biennial periodicity. Hypotheses on the cause of this excessive biennial tendency have thus far focused primarily on the model’s biases within the tropical Pacific. This study conducts CCSM3 experiments to show that the model’s biases in simulating the Indian Ocean mean sea surface temperatures (SSTs) and the Indian and Australian monsoon variability also contribute to the biennial ENSO tendency. Two CCSM3 simulations are contrasted: a control run that includes global ocean–atmosphere coupling and an experiment in which the air–sea coupling in the tropical Indian Ocean is turned off by replacing simulated SSTs with an observed monthly climatology. The decoupling experiment removes CCSM3’s warm bias in the tropical Indian Ocean and reduces the biennial variability in Indian and Australian monsoons by about 40% and 60%, respectively. The excessive biennial ENSO is found to reduce dramatically by about 75% in the decoupled experiment. It is shown that the biennial monsoon variability in CCSM3 excites an anomalous surface wind pattern in the western Pacific that projects well into the wind pattern associated with the onset phase of the simulated biennial ENSO. Therefore, the biennial monsoon variability is very effective in exciting biennial ENSO variability in CCSM3. The warm SST bias in the tropical Indian Ocean also increases ENSO variability by inducing stronger mean surface easterlies along the equatorial Pacific, which strengthen the Pacific ocean–atmosphere coupling and enhance the ENSO intensity.


2021 ◽  
Vol 34 (19) ◽  
pp. 7927-7942
Author(s):  
Yue Wu ◽  
Xiao-Tong Zheng ◽  
Qi-Wei Sun ◽  
Yu Zhang ◽  
Yan Du ◽  
...  

AbstractOcean salinity plays a crucial role in the upper-ocean stratification and local marine ecosystem. This study reveals that ocean salinity presents notable decadal variability in upper 200 m over the southeast Indian Ocean (SEIO). Previous studies linked this salinity variability with precipitation anomalies over the Indo-Pacific region modulated by the tropical Pacific decadal variability. Here we conduct a quantitative salinity budget analysis and show that, in contrast, oceanic advection, especially the anomalous meridional advection, plays a dominant role in modulating the SEIO salinity on the decadal time scale. The anomalous meridional advection is mainly associated with a zonal dipole pattern of sea level anomaly (SLA) in the south Indian Ocean (SIO). Specifically, positive and negative SLAs in the east and west of the SIO correspond to anomalous southward oceanic current, which transports much fresher seawater from the warm pool into the SEIO and thereby decreases the local upper-ocean salinity, and vice versa. Further investigation reveals that the local anomalous wind stress curl associated with tropical Pacific forcing is responsible for generating the sea level dipole pattern via oceanic Rossby wave adjustment on decadal time scale. This study highlights that the local ocean–atmosphere dynamical adjustment is critical for the decadal salinity variability in the SEIO.


2012 ◽  
Vol 25 (8) ◽  
pp. 2824-2842 ◽  
Author(s):  
Benjamin G. M. Webber ◽  
David P. Stevens ◽  
Adrian J. Matthews ◽  
Karen J. Heywood

Abstract The authors show that a simple three-dimensional ocean model linearized about a resting basic state can accurately simulate the dynamical ocean response to wind forcing by the Madden–Julian oscillation (MJO). This includes the propagation of equatorial waves in the Indian Ocean, from the generation of oceanic equatorial Kelvin waves to the arrival of downwelling oceanic equatorial Rossby waves in the western Indian Ocean, where they have been shown to trigger MJO convective activity. Simulations with idealized wind forcing suggest that the latitudinal width of this forcing plays a crucial role in determining the potential for such feedbacks. Forcing the model with composite MJO winds accurately captures the global ocean response, demonstrating that the observed ocean dynamical response to the MJO can be interpreted as a linear response to surface wind forcing. The model is then applied to study “primary” Madden–Julian events, which are not immediately preceded by any MJO activity or by any apparent atmospheric triggers, but have been shown to coincide with the arrival of downwelling oceanic equatorial Rossby waves. Case study simulations show how this oceanic equatorial Rossby wave activity is partly forced by reflection of an oceanic equatorial Kelvin wave triggered by a westerly wind burst 140 days previously, and partly directly forced by easterly wind stress anomalies around 40 days prior to the event. This suggests predictability for primary Madden–Julian events on times scales of up to five months, following the reemergence of oceanic anomalies forced by winds almost half a year earlier.


2011 ◽  
Vol 26 (5) ◽  
pp. 650-663 ◽  
Author(s):  
Eric A. Hendricks ◽  
Melinda S. Peng ◽  
Xuyang Ge ◽  
Tim Li

Abstract A dynamic initialization scheme for tropical cyclone structure and intensity in numerical prediction systems is described and tested. The procedure involves the removal of the analyzed vortex and, then, insertion of a new vortex that is dynamically initialized to the observed surface pressure into the numerical model initial conditions. This new vortex has the potential to be more balanced, and to have a more realistic boundary layer structure than by adding synthetic data in the data assimilation procedure to initialize the tropical cyclone in a model. The dynamic initialization scheme was tested on multiple tropical cyclones during 2008 and 2009 in the North Atlantic and western North Pacific Ocean basins using the Naval Research Laboratory’s tropical cyclone version of the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS-TC). The use of this initialization procedure yielded significant improvements in intensity forecasts, with no degradation in track performance. Mean absolute errors in the maximum sustained surface wind were reduced by approximately 5 kt for all lead times up to 72 h.


2013 ◽  
Vol 26 (4) ◽  
pp. 1152-1171 ◽  
Author(s):  
Caroline C. Ummenhofer ◽  
Franziska U. Schwarzkopf ◽  
Gary Meyers ◽  
Erik Behrens ◽  
Arne Biastoch ◽  
...  

Abstract Variations in eastern Indian Ocean upper-ocean thermal properties are assessed for the period 1970–2004, with a particular focus on asymmetric features related to opposite phases of Indian Ocean dipole events, using high-resolution ocean model hindcasts. Sensitivity experiments, where interannual atmospheric forcing variability is restricted to the Indian or Pacific Ocean only, support the interpretation of forcing mechanisms for large-scale asymmetric behavior in eastern Indian Ocean variability. Years are classified according to eastern Indian Ocean subsurface heat content (HC) as proxy of thermocline variations. Years characterized by an anomalous low HC feature a zonal gradient in upper-ocean properties near the equator, while high events have a meridional gradient from the tropics into the subtropics. The spatial and temporal characteristics of the seasonal evolution of HC anomalies for the two cases is distinct, as is the relative contribution from Indian Ocean atmospheric forcing versus remote influences from Pacific wind forcing: low events develop rapidly during austral winter/spring in response to Indian Ocean wind forcing associated with an enhanced southeasterly monsoon driving coastal upwelling and a shoaling thermocline in the east; in contrast, formation of an anomalous high eastern Indian Ocean HC is more gradual, with anomalies earlier in the year expanding from the Indonesian Throughflow (ITF) region, initiated by remote Pacific wind forcing, and transmitted through the ITF via coastal wave dynamics. Implications for seasonal predictions arise with high HC events offering extended lead times for predicting thermocline variations and upper-ocean properties across the eastern Indian Ocean.


Sign in / Sign up

Export Citation Format

Share Document