scholarly journals Kinematic and Precipitation Characteristics of Convective Systems Observed by Airborne Doppler Radar during the Life Cycle of a Madden–Julian Oscillation in the Indian Ocean

2014 ◽  
Vol 142 (4) ◽  
pp. 1385-1402 ◽  
Author(s):  
Nick Guy ◽  
David P. Jorgensen

Abstract This study presents characteristics of convective systems observed during the Dynamics of the Madden–Julian oscillation (DYNAMO) experiment by the instrumented NOAA WP-3D aircraft. Nine separate missions, with a focus on observing mesoscale convective systems (MCSs), were executed to obtain data in the active and inactive phase of a Madden–Julian oscillation (MJO) in the Indian Ocean. Doppler radar and in situ thermodynamic data are used to contrast the convective system characteristics during the evolution of the MJO. Isolated convection was prominent during the inactive phases of the MJO, with deepening convection during the onset of the MJO. During the MJO peak, convection and stratiform precipitation became more widespread. A larger population of deep convective elements led to a larger area of stratiform precipitation. As the MJO decayed, convective system top heights increased, though the number of convective systems decreased, eventually transitioning back to isolated convection. A distinct shift of echo top heights and contoured frequency-by-altitude diagram distributions of radar reflectivity and vertical wind speed indicated that some mesoscale characteristics were coupled to the MJO phase. Convective characteristics in the climatological initiation region (Indian Ocean) were also apparent. Comparison to results from the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) in the western Pacific indicated that DYNAMO MCSs were linearly organized more parallel to the low-level shear and without strong cold pools than in TOGA COARE. Three-dimensional MCS airflow also showed a different dynamical structure, with a lack of the descending rear inflow present in shear perpendicularly organized TOGA COARE MCSs. Weaker, but deeper updrafts were observed in DYNAMO.

2011 ◽  
Vol 68 (12) ◽  
pp. 3032-3051 ◽  
Author(s):  
Emily M. Riley ◽  
Brian E. Mapes ◽  
Stefan N. Tulich

Abstract The evolution of total cloud cover and cloud types is composited across the Madden–Julian oscillation (MJO) using CloudSat data for June 2006–May 2010. Two approaches are used to define MJO phases: 1) the local phase is determined at each longitude and time from filtered outgoing longwave radiation, and 2) the global phase is defined using a popular real-time multivariate MJO (RMM) index, which assigns the tropics to an MJO phase each day. In terms of local phase, CloudSat results show a familiar evolution of cloud type predominance: in the growing stages shallow clouds coexist with deep, intense, but narrow convective systems. Widespread cloud coverage and rainfall appear during the active phases, becoming more anvil dominated with time, and finally suppressed conditions return. Results are compared to the convectively coupled Kelvin wave, which has a similar life cycle to the MJO. Convection in the MJO tends to be modulated more by moisture variations compared to the Kelvin wave. In terms of global phases, wide deep precipitating, anvil, cumulus congestus, and altocumulus types exhibit similar eastward propagation from the Indian Ocean to the central Pacific, while the narrow deep precipitating type only propagates to the Maritime Continent. These propagating types also show coherent Western Hemisphere signals. Generally, negative Western Hemisphere anomalies occur when anomalies are positive over the Indian Ocean. In both approaches, sampling leads to pictorial renderings of actual clouds across MJO phases. These mosaics provide an objective representation of the cloud field that was unavailable before CloudSat and serve as a reminder to the complex nature of the MJO’s multiscale features.


2005 ◽  
Vol 18 (19) ◽  
pp. 4046-4064 ◽  
Author(s):  
Guang J. Zhang ◽  
Mingquan Mu

Abstract This study presents the simulation of the Madden–Julian oscillation (MJO) in the NCAR CCM3 using a modified Zhang–McFarlane convection parameterization scheme. It is shown that, with the modified scheme, the intraseasonal (20–80 day) variability in precipitation, zonal wind, and outgoing longwave radiation (OLR) is enhanced substantially compared to the standard CCM3 simulation. Using a composite technique based on the empirical orthogonal function (EOF) analysis, the paper demonstrates that the simulated MJOs are in better agreement with the observations than the standard model in many important aspects. The amplitudes of the MJOs in 850-mb zonal wind, precipitation, and OLR are comparable to those of the observations, and the MJOs show clearly eastward propagation from the Indian Ocean to the Pacific. In contrast, the simulated MJOs in the standard CCM3 simulation are weak and have a tendency to propagate westward in the Indian Ocean. Nevertheless, there remain several deficiencies that are yet to be addressed. The time period of the MJOs is shorter, about 30 days, compared to the observed time period of 40 days. The spatial scale of the precipitation signal is smaller than observed. Examination of convective heating from both deep and shallow convection and its relationship with moisture anomalies indicates that near the mature phase of the MJO, regions of shallow convection developing ahead of the deep convection coincide with regions of positive moisture anomalies in the lower troposphere. This is consistent with the recent observations and theoretical development that shallow convection helps to precondition the atmosphere for MJO by moistening the lower troposphere. Sensitivity tests are performed on the individual changes in the modified convection scheme. They show that both change of closure and use of a relative humidity threshold for the convection trigger play important roles in improving the MJO simulation. Use of the new closure leads to the eastward propagation of the MJO and increases the intensity of the MJO signal in the wind field, while imposing a relative humidity threshold enhances the MJO variability in precipitation.


2015 ◽  
Vol 163 ◽  
pp. 13-23 ◽  
Author(s):  
Audrey Martini ◽  
Nicolas Viltard ◽  
Scott M. Ellis ◽  
Emmanuel Fontaine

2009 ◽  
Vol 22 (2) ◽  
pp. 201-216 ◽  
Author(s):  
Lina Zhang ◽  
Bizheng Wang ◽  
Qingcun Zeng

Abstract The impact of the Madden–Julian oscillation (MJO) on summer rainfall in Southeast China is investigated using the Real-time Multivariate MJO (RMM) index and the observational rainfall data. A marked transition of rainfall patterns from being enhanced to being suppressed is found in Southeast China (east of 105°E and south of 35°N) on intraseasonal time scales as the MJO convective center moves from the Indian Ocean to the western Pacific Ocean. The maximum positive and negative anomalies of regional mean rainfall are in excess of 10% relative to the climatological regional mean. Such different rainfall regimes are associated with the corresponding changes in physical fields such as the western Pacific subtropical high (WPSH), moisture, and vertical motions. When the MJO is mainly over the Indian Ocean, the WPSH shifts farther westward, and the moisture and upward motions in Southeast China are increased. In contrast, when the MJO enters the western Pacific, the WPSH retreats eastward, and the moisture and upward motions in Southeast China are decreased. It is suggested that the MJO may influence summer rainfall in Southeast China through remote and local dynamical mechanisms, which correspond to the rainfall enhancement and suppression, respectively. The remote role is the energy propagation of the Rossby wave forced by the MJO-related heating over the Indian Ocean through the low-level westerly waveguide from the tropical Indian Ocean to Southeast China. The local role is the northward shift of the upward branch of the anomalous meridional circulation when the MJO is over the western Pacific, which causes eastward retreat of the WPSH and suppressed moisture transport toward Southeast China.


2015 ◽  
Vol 72 (5) ◽  
pp. 1908-1931 ◽  
Author(s):  
Justin P. Stachnik ◽  
Duane E. Waliser ◽  
Andrew J. Majda

Abstract This study presents an analysis of the precursor environmental conditions related to the termination of Madden–Julian oscillation (MJO) events. A simple climatology is created using a real-time MJO monitoring index, documenting the locations and frequencies of MJO decay. Lead–lag composites of several atmospheric variables including temperature, moisture, and intraseasonal wind anomalies are generated from three reanalyses. There is remarkable agreement among the datasets with long-term, lower-tropospheric moisture deficits over the local domain best identifying termination events over the Indian Ocean. MJO termination in the Indian Ocean is also linked to a northward shift of the intertropical convergence zone (ITCZ) with possible lead times as much as 20 days prior to MJO decay. Statistically significant differences in the low-level vertical velocity and specific humidity are also identified more than 10 days in advance of MJO termination events in the western Pacific, though the differences here are more symmetric about the equator. Unlike the Indian Ocean and western Pacific, MJOs that terminate over the Maritime Continent appear to be related to their own intensity rather than the downstream conditions. As such, only the strongest MJOs tend to propagate into the warm pool region. Finally, a budget analysis is performed on the three-dimensional moisture advection equation in order to better elucidate what time scales and physical mechanisms are most important for MJO termination. The combination of intraseasonal vertical circulation anomalies coupled with the mean-state specific humidity best explain the anomalous moisture patterns associated with MJO termination, suggesting that the downstream influence of the MJO circulation can eventually lead to its future demise.


2007 ◽  
Vol 20 (13) ◽  
pp. 2937-2960 ◽  
Author(s):  
Bohua Huang ◽  
J. Shukla

Abstract To understand the mechanisms of the interannual variability in the tropical Indian Ocean, two long-term simulations are conducted using a coupled ocean–atmosphere GCM—one with active air–sea coupling over the global ocean and the other with regional coupling restricted within the Indian Ocean to the north of 30°S while the climatological monthly sea surface temperatures (SSTs) are prescribed in the uncoupled oceans to drive the atmospheric circulation. The major spatial patterns of the observed upper-ocean heat content and SST anomalies can be reproduced realistically by both simulations, suggesting that they are determined by intrinsic coupled processes within the Indian Ocean. In both simulations, the interannual variability in the Indian Ocean is dominated by a tropical mode and a subtropical mode. The tropical mode is characterized by a coupled feedback among thermocline depth, zonal SST gradient, and wind anomalies over the equatorial and southern tropical Indian Ocean, which is strongest in boreal fall and winter. The tropical mode simulated by the global coupled model reproduces the main observational features, including a seasonal connection to the model El Niño–Southern Oscillation (ENSO). The ENSO influence, however, is weaker than that in a set of ensemble simulations described in Part I of this study, where the observed SST anomalies for 1950–98 are prescribed outside the Indian Ocean. Combining with the results from Part I of this study, it is concluded that ENSO can modulate the temporal variability of the tropical mode through atmospheric teleconnection. Its influence depends on the ENSO strength and duration. The stronger and more persistent El Niño events in the observations extend the life span of the anomalous events in the tropical Indian Ocean significantly. In the regional coupled simulation, the tropical mode is still active, but its dominant period is shifted away from that of ENSO. In the absence of ENSO forcing, the tropical mode is mainly stimulated by an anomalous atmospheric direct thermal cell forced by the fluctuations of the northwestern Pacific monsoon. The subtropical mode is characterized by an east–west dipole pattern of the SST anomalies in the southern subtropical Indian Ocean, which is strongest in austral fall. The SST anomalies are initially forced by surface heat flux anomalies caused by the anomalous southeast trade wind in the subtropical ocean during austral summer. The trade wind anomalies are in turn associated with extratropical variations from the southern annular mode. A thermodynamic air–sea feedback strengthens these subtropical anomalies quickly in austral fall and extends their remnants into the tropical ocean in austral winter. In the simulations, this subtropical variability is independent of ENSO.


2016 ◽  
Vol 29 (17) ◽  
pp. 6085-6108 ◽  
Author(s):  
Toshiaki Shinoda ◽  
Weiqing Han ◽  
Tommy G. Jensen ◽  
Luis Zamudio ◽  
E. Joseph Metzger ◽  
...  

Abstract Previous studies indicate that equatorial zonal winds in the Indian Ocean can significantly influence the Indonesian Throughflow (ITF). During the Cooperative Indian Ocean Experiment on Intraseasonal Variability (CINDY)/Dynamics of the Madden–Julian Oscillation (DYNAMO) field campaign, two strong MJO events were observed within a month without a clear suppressed phase between them, and these events generated exceptionally strong ocean responses. Strong eastward currents along the equator in the Indian Ocean lasted more than one month from late November 2011 to early January 2012. The influence of these unique MJO events during the field campaign on ITF variability is investigated using a high-resolution (1/25°) global ocean general circulation model, the Hybrid Coordinate Ocean Model (HYCOM). The strong westerlies associated with these MJO events, which exceed 10 m s−1, generate strong equatorial eastward jets and downwelling near the eastern boundary. The equatorial jets are realistically simulated by the global HYCOM based on the comparison with the data collected during the field campaign. The analysis demonstrates that sea surface height (SSH) and alongshore velocity anomalies at the eastern boundary propagate along the coast of Sumatra and Java as coastal Kelvin waves, significantly reducing the ITF transport at the Makassar Strait during January–early February. The alongshore velocity anomalies associated with the Kelvin wave significantly leads SSH anomalies. The magnitude of the anomalous currents at the Makassar Strait is exceptionally large because of the unique feature of the MJO events, and thus the typical seasonal cycle of ITF could be significantly altered by strong MJO events such as those observed during the CINDY/DYNAMO field campaign.


Sign in / Sign up

Export Citation Format

Share Document