scholarly journals Variational Correction of Aircraft Temperature Bias in the NCEP’s GSI Analysis System

2015 ◽  
Vol 143 (9) ◽  
pp. 3774-3803 ◽  
Author(s):  
Yanqiu Zhu ◽  
John C. Derber ◽  
R. James Purser ◽  
Bradley A. Ballish ◽  
Jeffrey Whiting

Abstract Various studies have noted that aircraft temperature data have a generally warm bias relative to radiosonde data around 200 hPa. In this study, variational aircraft temperature bias correction is incorporated in the Gridpoint Statistical Interpolation analysis system at the National Centers for Environmental Prediction. Several bias models, some of which include information about aircraft ascent/descent rate, are investigated. The results show that the aircraft temperature bias correction cools down the atmosphere analysis around 200 hPa, and improves the analysis and forecast fits to the radiosonde data. Overall, the quadratic aircraft ascent/descent rate bias model performs better than other bias models tested here, followed closely by the aircraft ascent/descent rate bias model. Two other issues, undocumented in previous studies, are also discussed in this paper. One is the bias correction of aircraft report (AIREP) data. Unlike Aircraft Meteorological Data Relay (AMDAR) data, where unique corrections are applied for each aircraft, bias correction is applied indiscriminately (without regard to tail numbers) to all AIREP data. The second issue is the problem of too many aircraft not reporting time in seconds, or too infrequently, to be able to determine accurate vertical displacement rates. In addition to the finite-difference method employed to estimate aircraft ascent/descent rate, a tensioned-splines method is tested to obtain more continuously smooth aircraft ascent/descent rates and mitigate the missing time information.

2019 ◽  
Vol 147 (6) ◽  
pp. 1927-1945
Author(s):  
Feng Gao ◽  
Zhiquan Liu ◽  
Juhui Ma ◽  
Neil A. Jacobs ◽  
Peter P. Childs ◽  
...  

Abstract A variational bias correction (VarBC) scheme is developed and tested using regional Weather Research and Forecasting Model Data Assimilation (WRFDA) to correct systematic errors in aircraft-based measurements of temperature produced by the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) system. Various bias models were investigated, using one or all of aircraft height tendency, Mach number, temperature tendency, and the observed temperature as predictors. These variables were expected to account for the representation of some well-known error sources contributing to uncertainties in TAMDAR temperature measurements. The parameters corresponding to these predictors were evolved in the model for a two-week period to generate initial estimates according to each unique aircraft tail number. Sensitivity experiments were then conducted for another one-month period. Finally, a case study using VarBC of a cold front precipitation event is examined. The implementation of VarBC reduces biases in TAMDAR temperature innovations. Even when using a bias model containing a single predictor, such as height tendency or Mach number, the VarBC produces positive impacts on analyses and short-range forecasts of temperature with smaller standard deviations and biases than the control run. Additionally, by employing a multiple-predictor bias model, which describes the statistical relations between innovations and predictors, and uses coefficients to control the evolution of components in the bias model with respect to their reference values, VarBC further reduces the average error of analyses and short-range forecasts with respect to observations. The potential impacts of VarBC on precipitation forecasts were evaluated, and the VarBC is able to indirectly improve the prediction of precipitation location by reducing the forecast error for wind-related synoptic circulation leading to precipitation.


2017 ◽  
Vol 145 (10) ◽  
pp. 4205-4225 ◽  
Author(s):  
Ming Hu ◽  
Stanley G. Benjamin ◽  
Therese T. Ladwig ◽  
David C. Dowell ◽  
Stephen S. Weygandt ◽  
...  

The Rapid Refresh (RAP) is an hourly updated regional meteorological data assimilation/short-range model forecast system running operationally at NOAA/National Centers for Environmental Prediction (NCEP) using the community Gridpoint Statistical Interpolation analysis system (GSI). This paper documents the application of the GSI three-dimensional hybrid ensemble–variational assimilation option to the RAP high-resolution, hourly cycling system and shows the skill improvements of 1–12-h forecasts of upper-air wind, moisture, and temperature over the purely three-dimensional variational analysis system. Use of perturbation data from an independent global ensemble, the Global Data Assimilation System (GDAS), is demonstrated to be very effective for the regional RAP hybrid assimilation. In this paper, application of the GSI-hybrid assimilation for the RAP is explained. Results from sensitivity experiments are shown to define configurations for the operational RAP version 2, the ratio of static and ensemble background error covariance, and vertical and horizontal localization scales for the operational RAP version 3. Finally, a 1-week RAP experiment from a summer period was performed using a global ensemble from a winter period, suggesting that a significant component of its multivariate covariance structure from the ensemble is independent of time matching between analysis time and ensemble valid time.


2007 ◽  
Vol 7 (5) ◽  
pp. 13175-13201 ◽  
Author(s):  
F. Immler ◽  
R. Treffeisen ◽  
D. Engelbart ◽  
K. Krüger ◽  
O. Schrems

Abstract. During the European heat wave summer 2003 with predominant high pressure conditions we performed a detailed study of upper tropospheric humidity and ice particles which yielded striking results concerning the occurrence of ice supersaturated regions (ISSR), cirrus, and contrails. Our study is based on lidar observations and meteorological data obtained at Lindenberg/Germany (52.2° N, 14.1° E) as well as the analysis of the European centre for medium range weather forecast (ECMWF). Cirrus clouds were detected in 55% of the lidar profiles and a large fraction of them were subvisible (optical depth <0.03). Thin ice clouds were particularly ubiquitous in high pressure systems. The radiosonde data showed that the upper troposphere was very often supersaturated with respect to ice. Relating the radiosonde profiles to concurrent lidar observations reveals that the ISSRs almost always contained ice particles. Persistent contrails observed with a camera were frequently embedded in these thin or subvisible cirrus clouds. The ECMWF cloud parametrisation reproduces the observed cirrus clouds consistently and a close correlation between the ice water path in the model and the measured optical depth of cirrus is demonstrated.


2014 ◽  
Vol 11 (11) ◽  
pp. 12659-12696 ◽  
Author(s):  
G. H. Fang ◽  
J. Yang ◽  
Y. N. Chen ◽  
C. Zammit

Abstract. Water resources are essential to the ecosystem and social economy in the desert and oasis of the arid Tarim River Basin, Northwest China, and expected to be vulnerable to climate change. Regional Climate Models (RCM) have been proved to provide more reliable results for regional impact study of climate change (e.g. on water resources) than GCM models. However, it is still necessary to apply bias correction before they are used for water resources research due to often considerable biases. In this paper, after a sensitivity analysis on input meteorological variables based on Sobol' method, we compared five precipitation correction methods and three temperature correction methods to the output of a RCM model with its application to the Kaidu River Basin, one of the headwaters of the Tarim River Basin. Precipitation correction methods include Linear Scaling (LS), LOCal Intensity scaling (LOCI), Power Transformation (PT), Distribution Mapping (DM) and Quantile Mapping (QM); and temperature correction methods include LS, VARIance scaling (VARI) and DM. These corrected precipitation and temperature were compared to the observed meteorological data, and then their impacts on streamflow were also compared by driving a distributed hydrologic model. The results show: (1) precipitation, temperature, solar radiation are sensitivity to streamflow while relative humidity and wind speed are not, (2) raw RCM simulations are heavily biased from observed meteorological data, which results in biases in the simulated streamflows, and all bias correction methods effectively improved theses simulations, (3) for precipitation, PT and QM methods performed equally best in correcting the frequency-based indices (e.g. SD, percentile values) while LOCI method performed best in terms of the time series based indices (e.g. Nash–Sutcliffe coefficient, R2), (4) for temperature, all bias correction methods performed equally well in correcting raw temperature. (5) For simulated streamflow, precipitation correction methods have more significant influence than temperature correction methods and the performances of streamflow simulations are consistent with these of corrected precipitation, i.e. PT and QM methods performed equally best in correcting flow duration curve and peak flow while LOCI method performed best in terms of the time series based indices. The case study is for an arid area in China based on a specific RCM and hydrologic model, but the methodology and some results can be applied to other area and other models.


2012 ◽  
Vol 16 (2) ◽  
pp. 305-318 ◽  
Author(s):  
I. Haddeland ◽  
J. Heinke ◽  
F. Voß ◽  
S. Eisner ◽  
C. Chen ◽  
...  

Abstract. Due to biases in the output of climate models, a bias correction is often needed to make the output suitable for use in hydrological simulations. In most cases only the temperature and precipitation values are bias corrected. However, often there are also biases in other variables such as radiation, humidity and wind speed. In this study we tested to what extent it is also needed to bias correct these variables. Responses to radiation, humidity and wind estimates from two climate models for four large-scale hydrological models are analysed. For the period 1971–2000 these hydrological simulations are compared to simulations using meteorological data based on observations and reanalysis; i.e. the baseline simulation. In both forcing datasets originating from climate models precipitation and temperature are bias corrected to the baseline forcing dataset. Hence, it is only effects of radiation, humidity and wind estimates that are tested here. The direct use of climate model outputs result in substantial different evapotranspiration and runoff estimates, when compared to the baseline simulations. A simple bias correction method is implemented and tested by rerunning the hydrological models using bias corrected radiation, humidity and wind values. The results indicate that bias correction can successfully be used to match the baseline simulations. Finally, historical (1971–2000) and future (2071–2100) model simulations resulting from using bias corrected forcings are compared to the results using non-bias corrected forcings. The relative changes in simulated evapotranspiration and runoff are relatively similar for the bias corrected and non bias corrected hydrological projections, although the absolute evapotranspiration and runoff numbers are often very different. The simulated relative and absolute differences when using bias corrected and non bias corrected climate model radiation, humidity and wind values are, however, smaller than literature reported differences resulting from using bias corrected and non bias corrected climate model precipitation and temperature values.


Climate ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 18 ◽  
Author(s):  
Beáta Szabó-Takács ◽  
Aleš Farda ◽  
Petr Skalák ◽  
Jan Meitner

Our goal was to investigate the influence of bias correction methods on climate simulations over the European domain. We calculated the Köppen−Geiger climate classification using five individual regional climate models (RCM) of the ENSEMBLES project in the European domain during the period 1961−1990. The simulated precipitation and temperature data were corrected using the European daily high-resolution gridded dataset (E-OBS) observed data by five methods: (i) the empirical quantile mapping of precipitation and temperature, (ii) the quantile mapping of precipitation and temperature based on gamma and Generalized Pareto Distribution of precipitation, (iii) local intensity scaling, (iv) the power transformation of precipitation and (v) the variance scaling of temperature bias corrections. The individual bias correction methods had a significant effect on the climate classification, but the degree of this effect varied among the RCMs. Our results on the performance of bias correction differ from previous results described in the literature where these corrections were implemented over river catchments. We conclude that the effect of bias correction may depend on the region of model domain. These results suggest that distribution free bias correction approaches are the most suitable for large domain sizes such as the pan-European domain.


2017 ◽  
Vol 8 (3) ◽  
pp. 889-900 ◽  
Author(s):  
Manolis G. Grillakis ◽  
Aristeidis G. Koutroulis ◽  
Ioannis N. Daliakopoulos ◽  
Ioannis K. Tsanis

Abstract. Bias correction of climate variables is a standard practice in climate change impact (CCI) studies. Various methodologies have been developed within the framework of quantile mapping. However, it is well known that quantile mapping may significantly modify the long-term statistics due to the time dependency of the temperature bias. Here, a method to overcome this issue without compromising the day-to-day correction statistics is presented. The methodology separates the modeled temperature signal into a normalized and a residual component relative to the modeled reference period climatology, in order to adjust the biases only for the former and preserve the signal of the later. The results show that this method allows for the preservation of the originally modeled long-term signal in the mean, the standard deviation and higher and lower percentiles of temperature. To illustrate the improvements, the methodology is tested on daily time series obtained from five Euro CORDEX regional climate models (RCMs).


2007 ◽  
Vol 135 (9) ◽  
pp. 3158-3173 ◽  
Author(s):  
Steven M. Lazarus ◽  
Corey G. Calvert ◽  
Michael E. Splitt ◽  
Pablo Santos ◽  
David W. Sharp ◽  
...  

Abstract A sea surface temperature (SST) analysis system designed to initialize short-term atmospheric model forecasts is evaluated for a month-long, relatively clear period in May 2004. System inputs include retrieved SSTs from the Geostationary Operational Environmental Satellite (GOES)-East and the Moderate Resolution Imaging Spectroradiometer (MODIS). The GOES SSTs are processed via a sequence of quality control and bias correction steps and are then composited. The MODIS SSTs are bias corrected and checked against the background field (GOES composites) prior to assimilation. Buoy data, withheld from the analyses, are used to bias correct the MODIS and GOES SSTs and to evaluate both the composites and analyses. The bias correction improves the identification of residual cloud-contaminated MODIS SSTs. The largest analysis system improvements are obtained from the adjustments associated with the creation of the GOES composites (i.e., a reduction in buoy/GOES composite rmse on the order of 0.3°–0.5°C). A total of 120 analyses (80 night and 40 day) are repeated for different experimental configurations designed to test the impact of the GOES composites, MODIS cloud mask, spatially varying background error covariance and decorrelation length scales, data reduction, and anisotropy. For the May 2004 period, the nighttime MODIS cloud mask is too conservative, at times removing good SST data and degrading the analyses. Nocturnal error variance estimates are approximately half that of the daytime and are relatively spatially homogeneous, indicating that the nighttime composites are, in general, superior. A 30-day climatological SST gradient is used to create anisotropic weights and a spatially varying length scale. The former improve the analyses in regions with significant SST gradients and sufficient data while the latter reduces the analysis rmse in regions where the innovations tend to be well correlated with distinct and persistent SST gradients (e.g., Loop Current). Data thinning reduces the rmse by expediting analysis convergence while simultaneously enhancing the computational efficiency of the analysis system. Based on these findings, an operational analysis configuration is proposed.


2009 ◽  
Vol 137 (7) ◽  
pp. 2349-2364 ◽  
Author(s):  
Seung-Jong Baek ◽  
Istvan Szunyogh ◽  
Brian R. Hunt ◽  
Edward Ott

Model error is the component of the forecast error that is due to the difference between the dynamics of the atmosphere and the dynamics of the numerical prediction model. The systematic, slowly varying part of the model error is called model bias. This paper evaluates three different ensemble-based strategies to account for the surface pressure model bias in the analysis scheme. These strategies are based on modifying the observation operator for the surface pressure observations by the addition of a bias-correction term. One estimates the correction term adaptively, while another uses the hydrostatic balance equation to obtain the correction term. The third strategy combines an adaptively estimated correction term and the hydrostatic-balance-based correction term. Numerical experiments are carried out in an idealized setting, where the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) model is integrated at resolution T62L28 to simulate the evolution of the atmosphere and the T30L7 resolution Simplified Parameterization Primitive Equation Dynamics (SPEEDY) model is used for data assimilation. The results suggest that the adaptive bias-correction term is effective in correcting the bias in the data-rich regions, while the hydrostatic-balance-based approach is effective in data-sparse regions. The adaptive bias-correction approach also has the benefit that it leads to a significant improvement of the temperature and wind analysis at the higher model levels. The best results are obtained when the two bias-correction approaches are combined.


2012 ◽  
Vol 140 (5) ◽  
pp. 1517-1538 ◽  
Author(s):  
Monique Tanguay ◽  
Luc Fillion ◽  
Ervig Lapalme ◽  
Manon Lajoie

Abstract As a second step in the development of the Canadian Regional Data Assimilation System following Fillion et al., this study extends the approach to the four-dimensional variational data assimilation (4D-Var) context. Emphasis is first put on illustrating the importance of controlling lateral boundary conditions (LBCs). The use in the minimization of a horizontal grid over a domain exceeding the horizontal grid of the high-resolution nonlinear model is then proposed. The authors examine the performance of this 4D-Var formulation as an upcoming upgrade to the currently operational regional three-dimensional variational data assimilation (3D-Var) system. Forecast verifications against radiosonde data for 118 winter cases and 118 summer cases were performed. Results indicate a slight positive impact up to 48 h against North American radiosondes, but with a significant positive impact (especially for winds) at mid- and high latitudes during the summer. Accumulated precipitation scores over 24 h, whether during the first or second day of the forecasts, are slightly improved. The regional 4D-Var analysis system described in this study can run within current real-time “regional run” allocation for operations at the Canadian Meteorological Center (CMC). Future improvements of this system are briefly mentioned especially regarding the upcoming computer upgrade at CMC.


Sign in / Sign up

Export Citation Format

Share Document