A Geospatial Analysis of Convective Rainfall Regions Within Tropical Cyclones After Landfall

2010 ◽  
Vol 1 (2) ◽  
pp. 71-91 ◽  
Author(s):  
Corene J. Matyas

In this article, the author utilizes a GIS to spatially analyze radar reflectivity returns during the 24 hours following 43 tropical cyclone (TC) landfalls. The positions of convective rainfall regions and their areal extent are then examined according to storm intensity, motion, vertical wind shear, time until extratropical transition, time after landfall, and distance from the coastline. As forward velocity increases in conjunction with an extratropical transition, these regions move outward, shift from the right side to the front of the TC, and grow in size. A similar radial shift, but with a decrease in areal extent, occurs as TCs weaken. Further quantification of the shapes of these regions could yield a more spatially accurate assessment of where TCs may produce high rainfall totals.

2013 ◽  
pp. 1069-1088
Author(s):  
Corene J. Matyas

In this article, the author utilizes a GIS to spatially analyze radar reflectivity returns during the 24 hours following 43 tropical cyclone (TC) landfalls. The positions of convective rainfall regions and their areal extent are then examined according to storm intensity, motion, vertical wind shear, time until extratropical transition, time after landfall, and distance from the coastline. As forward velocity increases in conjunction with an extratropical transition, these regions move outward, shift from the right side to the front of the TC, and grow in size. A similar radial shift, but with a decrease in areal extent, occurs as TCs weaken. Further quantification of the shapes of these regions could yield a more spatially accurate assessment of where TCs may produce high rainfall totals.


2010 ◽  
Vol 10 (7) ◽  
pp. 3163-3188 ◽  
Author(s):  
M. Riemer ◽  
M. T. Montgomery ◽  
M. E. Nicholls

Abstract. An important roadblock to improved intensity forecasts for tropical cyclones (TCs) is our incomplete understanding of the interaction of a TC with the environmental flow. In this paper we re-visit the canonical problem of a TC in vertical wind shear on an f-plane. A suite of numerical experiments is performed with intense TCs in moderate to strong vertical shear. We employ a set of simplified model physics – a simple bulk aerodynamic boundary layer scheme and "warm rain" microphysics – to foster better understanding of the dynamics and thermodynamics that govern the modification of TC intensity. In all experiments the TC is resilient to shear but significant differences in the intensity evolution occur. The ventilation of the TC core with dry environmental air at mid-levels and the dilution of the upper-level warm core are two prevailing hypotheses for the adverse effect of vertical shear on storm intensity. Here we propose an alternative and arguably more effective mechanism how cooler and drier (lower θe) air – "anti-fuel" for the TC power machine – can enter the core region of the TC. Strong and persistent, shear-induced downdrafts flux low θe air into the boundary layer from above, significantly depressing the θe values in the storm's inflow layer. Air with lower θe values enters the eyewall updrafts, considerably reducing eyewall θe values in the azimuthal mean. When viewed from the perspective of an idealised Carnot-cycle heat engine a decrease of storm intensity can thus be expected. Although the Carnot cycle model is – if at all – only valid for stationary and axisymmetric TCs, a close association of the downward transport of low θe into the boundary layer and the intensity evolution offers further evidence in support of our hypothesis. The downdrafts that flush the boundary layer with low θe air are tied to a quasi-stationary, azimuthal wave number 1 convective asymmetry outside of the eyewall. This convective asymmetry and the associated downdraft pattern extends outwards to approximately 150 km. Downdrafts occur on the vortex scale and form when precipitation falls out from sloping updrafts and evaporates in the unsaturated air below. It is argued that, to zero order, the formation of the convective asymmetry is forced by frictional convergence associated with the azimuthal wave number 1 vortex Rossby wave structure of the outer-vortex tilt. This work points to an important connection between the thermodynamic impact in the near-core boundary layer and the asymmetric balanced dynamics governing the TC vortex evolution.


2009 ◽  
Vol 9 (3) ◽  
pp. 10711-10775 ◽  
Author(s):  
M. Riemer ◽  
M. T. Montgomery ◽  
M. E. Nicholls

Abstract. An important roadblock to improved intensity forecasts for tropical cyclones (TCs) is our incomplete understanding of the interaction of a TC with the environmental flow. In this paper we re-visit the classical idealised numerical experiment of tropical cyclones (TCs) in vertical wind shear on an f-plane. We employ a set of simplified model physics – a simple bulk aerodynamic boundary layer scheme and "warm rain" microphysics – to foster better understanding of the dynamics and thermodynamics that govern the modification of TC intensity. A suite of experiments is performed with intense TCs in moderate to strong vertical shear. In all experiments the TC is resilient to shear but significant differences in the intensity evolution occur. The ventilation of the TC core with dry environmental air at mid-levels and the dilution of the upper-level warm core are two prevailing hypotheses for the adverse effect of vertical shear on storm intensity. Here we propose an alternative and arguably more effective mechanism how cooler and drier (lower θe) air – "anti-fuel" for the TC power machine – can enter the core region of the TC. Strong and persistent downdrafts flux low θe air from the lower and middle troposphere into the boundary layer, significantly depressing the θe values in the storm's inflow layer. Air with lower θe values enters the eyewall updrafts, considerably reducing eyewall θe values in the azimuthal mean. When viewed from the perspective of an idealised Carnot-cycle heat engine a decrease of storm intensity can thus be expected. Although the Carnot cycle model is – if at all – only valid for stationary and axisymmetric TCs, a strong correlation between the downward transport of low θe into the boundary layer and the intensity evolution offers further evidence in support of our hypothesis. The downdrafts that flush the inflow layer with low θe air are associated with a quasi-stationary region of convective activity outside the TC's eyewall. We show evidence that, to zero order, the formation of the convective asymmetry is driven by the balanced dynamical response of the TC vortex to the vertical shear forcing. Thus a close link is provided between the thermodynamic impact in the near-core boundary layer and the balanced dynamics governing the TC vortex evolution.


2017 ◽  
Vol 145 (10) ◽  
pp. 3989-4009 ◽  
Author(s):  
Bradley W. Klotz ◽  
Haiyan Jiang

Because surface wind speeds within tropical cyclones are important for operational and research interests, it is vital to understand surface wind structure in relation to various storm and environmental influences. In this study, global rain-corrected scatterometer winds are used to quantify and evaluate characteristics of tropical cyclone surface wind asymmetries using a modified version of a proven aircraft-based low-wavenumber analysis tool. The globally expanded surface wind dataset provides an avenue for a robust statistical analysis of the changes in structure due to tropical cyclone intensity, deep-layer vertical wind shear, and wind shear’s relationship with forward storm motion. A presentation of the quantified asymmetry indicates that wind shear has a significant influence on tropical storms at all radii but only for areas away from the radius of maximum wind in both nonmajor and major hurricanes. Evaluation of a shear’s directional relation to motion indicates that a cyclonic rotation of the surface wind field asymmetry from downshear left to upshear left occurs in conjunction with an anticyclonic rotation of the directional relationship (i.e., from shear direction to the left, same, right, or opposite of the motion direction). It was discovered that in tropical cyclones experiencing effects from wind shear, an increase in absolute angular momentum transport occurs downshear and often downshear right. The surface wind speed low-wavenumber maximum in turn forms downwind of this momentum transport.


2010 ◽  
Vol 67 (1) ◽  
pp. 274-284 ◽  
Author(s):  
John Molinari ◽  
David Vollaro

Abstract The previous study of helicity, CAPE, and shear in Hurricane Bonnie (1998) was extended to all eight tropical cyclones sampled by NASA during the Convection and Moisture Experiments (CAMEX). Storms were categorized as having large or small ambient vertical wind shear, with 10 m s−1 as the dividing line. In strongly sheared storms, the downshear mean helicity exceeded the upshear mean by a factor of 4. As in the previous study, the helicity differences resulted directly from the tropical cyclone response to ambient shear, with enhanced in-up-out flow and veering of the wind with height present downshear. CAPE in strongly sheared storms was 60% larger downshear. Mean inflow near the surface and the depth of the inflow layer each were 4 times larger downshear. At more than 30% of observation points outside the 100-km radius in the downshear right quadrant, midlatitude empirical parameters indicated a strong likelihood of supercells. No such points existed upshear in highly sheared storms. Much smaller upshear–downshear differences and little likelihood of severe cells occurred in storms with ambient wind shear below 10 m s−1. In addition to these azimuthal asymmetries, highly sheared storms produced 30% larger area-averaged CAPE and double the area-averaged helicity versus relatively unsheared storms. The vortex-scale increase in these quantities lessens the negative impact of large vertical wind shear.


2014 ◽  
Vol 142 (9) ◽  
pp. 3372-3392 ◽  
Author(s):  
Annette M. Foerster ◽  
Michael M. Bell ◽  
Patrick A. Harr ◽  
Sarah C. Jones

A unique dataset observing the life cycle of Typhoon Sinlaku was collected during The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC) in 2008. In this study observations of the transformation stage of the extratropical transition of Sinlaku are analyzed. Research flights with the Naval Research Laboratory P-3 and the U.S. Air Force WC-130 aircraft were conducted in the core region of Sinlaku. Data from the Electra Doppler Radar (ELDORA), dropsondes, aircraft flight level, and satellite atmospheric motion vectors were analyzed with the recently developed Spline Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation (SAMURAI) software with a 1-km horizontal- and 0.5-km vertical-node spacing. The SAMURAI analysis shows marked asymmetries in the structure of the core region in the radar reflectivity and three-dimensional wind field. The highest radar reflectivities were found in the left of shear semicircle, and maximum ascent was found in the downshear left quadrant. Initial radar echos were found slightly upstream of the downshear direction and downdrafts were primarily located in the upshear semicircle, suggesting that individual cells in Sinlaku’s eyewall formed in the downshear region, matured as they traveled downstream, and decayed in the upshear region. The observed structure is consistent with previous studies of tropical cyclones in vertical wind shear, suggesting that the eyewall convection is primarily shaped by increased vertical wind shear during step 2 of the transformation stage, as was hypothesized by Klein et al. A transition from active convection upwind to stratiform precipitation downwind is similar to that found in the principal rainband of more intense tropical cyclones.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 895
Author(s):  
Sanghoon Kim ◽  
Corene J. Matyas ◽  
Guoqian Yan

There continues to be a need to relate rainfall produced by tropical cyclones (TCs) to moisture in the near-storm environment. This research measured the distribution of volumetric rainfall around 43 TCs at the time of landfall over the U.S. Gulf Coast. The spatial patterns of rainfall were related to atmospheric moisture, storm intensity, vertical wind shear, and storm motion. We employed a geographic information system (GIS) to perform the spatial analysis of satellite-derived rain rates and total precipitable water (TPW), which was measured on the day before landfall. Mann–Whitney U tests revealed statistically significant differences in conditions when TCs were grouped by location. TCs moving over Texas entrained dry air from the continent to produce less rainfall to the left of their moving direction. As moisture was plentiful, rainfall symmetry during landfall over the central Gulf Coast was mainly determined by the vector of vertical wind shear and storm intensity. For landfalls over the Florida peninsula, interaction with a cooler and drier air mass left of center created an uplift boundary that corresponded with more rainfall on the TC’s left side when the moisture boundary represented by the 40 mm contour of TPW existed 275–350 km from the storm center.


2012 ◽  
Vol 93 (12) ◽  
pp. 1901-1912 ◽  
Author(s):  
Brian Tang ◽  
Kerry Emanuel

An important environmental control of both tropical cyclone intensity and genesis is vertical wind shear. One hypothesized pathway by which vertical shear affects tropical cyclones is midlevel ventilation—or the flux of low-entropy air into the center of the tropical cyclone. Based on a theoretical framework, a ventilation index is introduced that is equal to the environmental vertical wind shear multiplied by the nondimensional midlevel entropy deficit divided by the potential intensity. The ventilation index has a strong influence on tropical cyclone climatology. Tropical cyclogenesis preferentially occurs when and where the ventilation index is anomalously low. Both the ventilation index and the tropical cyclone's normalized intensity, or the intensity divided by the potential intensity, constrain the distribution of tropical cyclone intensification. The most rapidly intensifying storms are characterized by low ventilation indices and intermediate normalized intensities, while the most rapidly weakening storms are characterized by high ventilation indices and high normalized intensities. Since the ventilation index can be derived from large-scale fields, it can serve as a simple and useful metric for operational forecasts of tropical cyclones and diagnosis of model errors.


2018 ◽  
Vol 75 (8) ◽  
pp. 2687-2709 ◽  
Author(s):  
William A. Komaromi ◽  
James D. Doyle

Abstract The interaction between a tropical cyclone (TC) and an upper-level trough is simulated in an idealized framework using Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) for Tropical Cyclones (COAMPS-TC) on a β plane. We explore the effect of the trough on the environment, structure, and intensity of the TC. In a simulation that does not have a trough, environmental inertial stability is dominated by Coriolis, and outflow remains preferentially directed equatorward throughout the simulation. In the presence of a trough, negative storm-relative tangential wind in the base of the trough reduces the inertial stability such that the outflow shifts from equatorward to poleward. This interaction results in a ~24-h period of enhanced upper-level divergence coincident with intensification of the TC. Sensitivity tests reveal that if the TC is too far from the trough, favorable interaction does not occur. If the TC is too close to the trough, the storm weakens because of enhanced vertical wind shear. Only when the relative distance between the TC and the trough is 0.2–0.3 times the wavelength of the trough in x and 0.8–1.2 times the amplitude of the trough in y does favorable interaction and TC intensification occur. However, stochastic effects make it difficult to isolate the intensity change associated directly with the trough interaction. Outflow is found to be predominantly ageostrophic at small radii and deflects to the right (in the Northern Hemisphere) since it is unbalanced. The outflow becomes predominantly geostrophic at larger radii but not before a rightward deflection has already occurred. This finding sheds light on why the outflow accelerates toward but generally never reaches the region of lowest inertial stability.


Author(s):  
Joshua J. Alland ◽  
Brian H. Tang ◽  
Kristen L. Corbosiero ◽  
George H. Bryan

AbstractThis study examines how midlevel dry air and vertical wind shear (VWS) can modulate tropical cyclone (TC) development via downdraft ventilation. A suite of experiments was conducted with different combinations of initial midlevel moisture and VWS. A strong, positive, linear relationship exists between the low-level vertical mass flux in the inner core and TC intensity. The linear increase in vertical mass flux with intensity is not due to an increased strength of upward motions but, instead, is due to an increased areal extent of strong upward motions (w > 0:5 m s−1). This relationship suggests physical processes that could influence the vertical mass flux, such as downdraft ventilation, influence the intensity of a TC.The azimuthal asymmetry and strength of downdraft ventilation is associated with the vertical tilt of the vortex: downdraft ventilation is located cyclonically downstream from the vertical tilt direction and its strength is associated with the magnitude of the vertical tilt. Importantly, equivalent potential temperature of parcels associated with downdraft ventilation trajectories quickly recovers via surface fluxes in the subcloud layer, but the areal extent of strong upward motions is reduced. Altogether, the modulating effects of downdraft ventilation on TC development are the downward transport of low-equivalent potential temperature, negative-buoyancy air left-of-shear and into the upshear semicircle, as well as low-level radial outflow upshear, which aid in reducing the areal extent of strong upward motions, thereby reducing the vertical mass flux in the inner core, and stunting TC development.


Sign in / Sign up

Export Citation Format

Share Document