scholarly journals Microphysical Characteristics of Squall-Line Stratiform Precipitation and Transition Zones Simulated Using an Ice Particle Property-Evolving Model

2018 ◽  
Vol 146 (3) ◽  
pp. 723-743 ◽  
Author(s):  
Anders A. Jensen ◽  
Jerry Y. Harrington ◽  
Hugh Morrison

Abstract A quasi-idealized 3D squall-line case is simulated using a novel bulk microphysics scheme called the Ice-Spheroids Habit Model with Aspect-ratio Evolution (ISHMAEL). In ISHMAEL, the evolution of ice particle properties (e.g., mass, shape, maximum diameter, density, and fall speed) are predicted during vapor growth, sublimation, riming, and melting, allowing ice properties to evolve from various microphysical processes without needing separate unrimed and rimed ice categories. ISHMAEL produces both a transition zone and an enhanced stratiform precipitation region, and ice particle properties are analyzed to determine the characteristics of ice that lead to the development of these squall-line features. Rimed particles advected rearward from the convective region produce the enhanced stratiform precipitation region. The transition zone results from hydrometeor sorting; the evolution of ice particle properties in the convective region leads to fall speeds that favor ice advecting rearward of the transition zone before reaching the melting level, causing a local minimum in precipitation rate and reflectivity there. Sensitivity studies show that the fall speed of ice particles largely determines the location of the enhanced stratiform precipitation region and whether or not a transition zone forms. The representation of microphysical processes, such as rime splintering and aggregation, and ice size distribution shape can impact the mean ice particle fall speeds enough to significantly impact the location of the enhanced stratiform precipitation region and the existence of the transition zone.

2016 ◽  
Vol 144 (1) ◽  
pp. 371-392 ◽  
Author(s):  
Yujie Pan ◽  
Ming Xue ◽  
Guoqing Ge

Abstract In this study, a new set of reflectivity equations are introduced into the Advanced Regional Prediction System (ARPS) cloud analysis system. This set of equations incorporates double-moment microphysics information in the analysis by adopting a set of diagnostic relationships between the intercept parameters and the corresponding mass mixing ratios. A reflectivity- and temperature-based graupel classification scheme is also implemented according to a hydrometeor identification (HID) diagram. A squall line that occurred on 23 April 2007 over southern China containing a pronounced trailing stratiform precipitation region is used as a test case to evaluate the impacts of the enhanced cloud analysis scheme. The results show that using the enhanced cloud analysis scheme is able to better capture the characteristics of the squall line in the forecast. The predicted squall line exhibits a wider stratiform region and a more clearly defined transition zone between the leading convection and the trailing stratiform precipitation region agreeing better with observations in general, when using the enhanced cloud analysis together with the two-moment microphysics scheme. The quantitative precipitation forecast skill score is also improved.


2015 ◽  
Vol 72 (1) ◽  
pp. 287-311 ◽  
Author(s):  
Hugh Morrison ◽  
Jason A. Milbrandt

Abstract A method for the parameterization of ice-phase microphysics is proposed and used to develop a new bulk microphysics scheme. All ice-phase particles are represented by several physical properties that evolve freely in time and space. The scheme prognoses four ice mixing ratio variables, total mass, rime mass, rime volume, and number, allowing 4 degrees of freedom for representing the particle properties using a single category. This approach represents a significant departure from traditional microphysics schemes in which ice-phase hydrometeors are partitioned into various predefined categories (e.g., cloud ice, snow, and graupel) with prescribed characteristics. The liquid-phase component of the new scheme uses a standard two-moment, two-category approach. The proposed method and a complete description of the new predicted particle properties (P3) scheme are provided. Results from idealized model simulations of a two-dimensional squall line are presented that illustrate overall behavior of the scheme. Despite its use of a single ice-phase category, the scheme simulates a realistically wide range of particle characteristics in different regions of the squall line, consistent with observed ice particles in real squall lines. Sensitivity tests show that both the prediction of the rime mass fraction and the rime density are important for the simulation of the squall-line structure and precipitation.


2017 ◽  
Vol 74 (9) ◽  
pp. 2761-2787 ◽  
Author(s):  
Minghui Diao ◽  
George H. Bryan ◽  
Hugh Morrison ◽  
Jorgen B. Jensen

Abstract Output from idealized simulations of a squall line are compared with in situ aircraft-based observations from the Deep Convective Clouds and Chemistry campaign. Relative humidity distributions around convection are compared between 1-Hz aircraft observations (≈250-m horizontal scale) and simulations using a double-moment bulk microphysics scheme at three horizontal grid spacings: Δx = 0.25, 1, and 4 km. The comparisons focus on the horizontal extent of ice supersaturated regions (ISSRs), the maximum and average relative humidity with respect to ice (RHi) in ISSRs, and the ice microphysical properties during cirrus cloud evolution, with simulations at 0.25 and 1 km providing better results than the 4-km simulation. Within the ISSRs, all the simulations represent the dominant contributions of water vapor horizontal heterogeneities to ISSR formation on average, but with larger variabilities in such contributions than the observations. The best results are produced by a Δx = 0.25-km simulation with the RHi threshold for initiating ice nucleation increased to 130%, which improves almost all the ISSR characteristics and allows for larger magnitude and frequency of ice supersaturation (ISS) > 8%. This simulation also allows more occurrences of clear-sky ISSRs and a higher spatial fraction of ISS for in-cloud conditions, which are consistent with the observations. These improvements are not reproduced by modifying other ice microphysical processes, such as a factor-of-2 reduction in the ice nuclei concentration; a factor-of-10 reduction in the vapor deposition rate; turning off heterogeneous contact and immersion freezing; or turning off homogeneous freezing of liquid water.


2011 ◽  
Vol 68 (5) ◽  
pp. 1114-1123 ◽  
Author(s):  
Jasmine Cetrone ◽  
Robert A. Houze

Abstract The anvil clouds of tropical squall-line systems over West Africa have been examined using cloud radar data and divided into those that appear ahead of the leading convective line and those on the trailing side of the system. The leading anvils are generally higher in altitude than the trailing anvil, likely because the hydrometeors in the leading anvil are directly connected to the convective updraft, while the trailing anvil generally extends out of the lower-topped stratiform precipitation region. When the anvils are subdivided into thick, medium, and thin portions, the thick leading anvil is seen to have systematically higher reflectivity than the thick trailing anvil, suggesting that the leading anvil contains numerous larger ice particles owing to its direct connection to the convective region. As the leading anvil ages and thins, it retains its top. The leading anvil appears to add hydrometeors at the highest altitudes, while the trailing anvil is able to moisten a deep layer of the atmosphere.


2009 ◽  
Vol 137 (3) ◽  
pp. 991-1007 ◽  
Author(s):  
H. Morrison ◽  
G. Thompson ◽  
V. Tatarskii

Abstract A new two-moment cloud microphysics scheme predicting the mixing ratios and number concentrations of five species (i.e., cloud droplets, cloud ice, snow, rain, and graupel) has been implemented into the Weather Research and Forecasting model (WRF). This scheme is used to investigate the formation and evolution of trailing stratiform precipitation in an idealized two-dimensional squall line. Results are compared to those using a one-moment version of the scheme that predicts only the mixing ratios of the species, and diagnoses the number concentrations from the specified size distribution intercept parameter and predicted mixing ratio. The overall structure of the storm is similar using either the one- or two-moment schemes, although there are notable differences. The two-moment (2-M) scheme produces a widespread region of trailing stratiform precipitation within several hours of the storm formation. In contrast, there is negligible trailing stratiform precipitation using the one-moment (1-M) scheme. The primary reason for this difference are reduced rain evaporation rates in 2-M compared to 1-M in the trailing stratiform region, leading directly to greater rain mixing ratios and surface rainfall rates. Second, increased rain evaporation rates in 2-M compared to 1-M in the convective region at midlevels result in weaker convective updraft cells and increased midlevel detrainment and flux of positively buoyant air from the convective into the stratiform region. This flux is in turn associated with a stronger mesoscale updraft in the stratiform region and enhanced ice growth rates. The reduced (increased) rates of rain evaporation in the stratiform (convective) regions in 2-M are associated with differences in the predicted rain size distribution intercept parameter (which was specified as a constant in 1-M) between the two regions. This variability is consistent with surface disdrometer measurements in previous studies that show a rapid decrease of the rain intercept parameter during the transition from convective to stratiform rainfall.


2015 ◽  
Vol 72 (1) ◽  
pp. 312-339 ◽  
Author(s):  
Hugh Morrison ◽  
Jason A. Milbrandt ◽  
George H. Bryan ◽  
Kyoko Ikeda ◽  
Sarah A. Tessendorf ◽  
...  

Abstract A new microphysics scheme has been developed based on the prediction of bulk particle properties for a single ice-phase category, in contrast to the traditional approach of separating ice into various predefined species (e.g., cloud ice, snow, and graupel). In this paper, the new predicted particle properties (P3) scheme, described in Part I of this series, is tested in three-dimensional simulations using the Weather Research and Forecasting (WRF) Model for two contrasting well-observed cases: a midlatitude squall line and winter orographic precipitation. Results are also compared with simulations using other schemes in WRF. Simulations with P3 can produce a wide variety of particle characteristics despite having only one free ice-phase category. For the squall line, it produces dense, fast-falling, hail-like ice near convective updraft cores and lower-density, slower-falling ice elsewhere. Sensitivity tests show that this is critical for simulating high precipitation rates observed along the leading edge of the storm. In contrast, schemes that represent rimed ice as graupel, with lower fall speeds than hail, produce lower peak precipitation rates and wider, less distinct, and less realistic regions of high convective reflectivity. For the orographic precipitation case, P3 produces areas of relatively fast-falling ice with characteristics of rimed snow and low- to medium-density graupel on the windward slope. This leads to less precipitation on leeward slopes and more on windward slopes compared to the other schemes that produce large amounts of snow relative to graupel (with generally the opposite for schemes with significant graupel relative to snow). Overall, the new scheme produces reasonable results for a reduced computational cost.


2010 ◽  
Vol 10 (2) ◽  
pp. 3605-3625
Author(s):  
G. Baumgarten ◽  
J. Fiedler ◽  
M. Rapp

Abstract. Noctilucent clouds (NLC) in the polar summer mesopause region have been observed in Norway (69° N, 16° E) between 1998 and 2009 by 3-color lidar technique. Assuming a mono-modal Gaussian size distribution we deduce mean and width of the particle sizes throughout the clouds. We observe a quasi linear relationship between distribution width and mean of the particle size at the top of the clouds and a deviation from this behavior for particle sizes larger than 40 nm, most often in the lower part of the layer. The vertically integrated particle properties show that 65% of the data follows the linear relationship with a slope of 0.42±0.02. For the vertically resolved particle properties (Δz=0.15 km) the slope is smaller and only 0.39±0.03. We compare our observations to microphysical modeling of noctilucent clouds and find that the distribution width depends on turbulence, the time that turbulence can act (cloud age), and the sampling volume/time (atmospheric variability). The model results nicely reproduce the measurements and show that the observed slope can be explained by eddy diffusion profiles as observed from rocket measurements.


2005 ◽  
Vol 35 (2) ◽  
pp. 175-184 ◽  
Author(s):  
Rachel Ifanger Albrecht ◽  
Maria Assunção Faus da Silva Dias

The distinction between convective and stratiform precipitation profiles around various precipitating systems existent in tropical regions is very important to the global atmospheric circulation, which is extremely sensitive to vertical latent heat distribution. In South America, the convective activity responds to the Intraseasonal Oscillation (IOS). This paper analyzes a disdrometer and a radar profiler data, installed in the Ji-Paraná airport, RO, Brazil, for the field experiment WETAMC/LBA & TRMM/LBA, during January and February of 1999. The microphysical analysis of wind regimes associated with IOS showed a large difference in type, size and microphysical processes of hydrometeor growth in each wind regime: easterly regimes had more turbulence and consequently convective precipitation formation, and westerly regimes had a more stratiform precipitation formation.


2020 ◽  
Vol 77 (8) ◽  
pp. 2765-2791 ◽  
Author(s):  
Matthew R. Kumjian ◽  
Kelly Lombardo

Abstract A detailed microphysical model of hail growth is developed and applied to idealized numerical simulations of deep convective storms. Hailstone embryos of various sizes and densities may be initialized in and around the simulated convective storm updraft, and then are tracked as they are advected and grow through various microphysical processes. Application to an idealized squall line and supercell storm results in a plausibly realistic distribution of maximum hailstone sizes for each. Simulated hail growth trajectories through idealized supercell storms exhibit many consistencies with previous hail trajectory work that used observed storms. Systematic tests of uncertain model parameters and parameterizations are performed, with results highlighting the sensitivity of hail size distributions to these changes. A set of idealized simulations is performed for supercells in environments with varying vertical wind shear to extend and clarify our prior work. The trajectory calculations reveal that, with increased zonal deep-layer shear, broader updrafts lead to increased residence time and thus larger maximum hail sizes. For cases with increased meridional low-level shear, updraft width is also increased, but hailstone sizes are smaller. This is a result of decreased residence time in the updraft, owing to faster northward flow within the updraft that advects hailstones through the growth region more rapidly. The results suggest that environments leading to weakened horizontal flow within supercell updrafts may lead to larger maximum hailstone sizes.


Sign in / Sign up

Export Citation Format

Share Document