scholarly journals SPATIOTEMPORAL ANALYSIS FOR WILDLIFE-VEHICLE-COLLISIONS BASED ON ACCIDENT STATISTICS OF THE COUNTY STRAUBING-BOGEN IN LOWER BAVARIA

Author(s):  
R. Pagany ◽  
W. Dorner

During the last years the numbers of wildlife-vehicle-collisions (WVC) in Bavaria increased considerably. Despite the statistical registration of WVC and preventive measures at areas of risk along the roads, the number of such accidents could not be contained. Using geospatial analysis on WVC data of the last five years for county Straubing-Bogen, Bavaria, a small-scale methodology was found to analyse the risk of WVC along the roads in the investigated area. Various indicators were examined, which may be related to WVC. The risk depends on the time of the day and year which shows correlations in turn to the traffic density and wildlife population. Additionally the location of the collision depends on the species and on different environmental parameters. Accidents seem to correlate with the land use left and right of the street. Land use data and current vegetation were derived from remote sensing data, providing information of the general land use, also considering the vegetation period. For this a number of hot spots was selected to identify potential dependencies between land use, vegetation and season. First results from these hotspots show, that WVCs do not only depend on land use, but may show a correlation with the vegetation period. With regard to agriculture and seasonal as well as annual changes this indicates that warnings will fail due to their static character in contrast to the dynamic situation of land use and resulting risk for WVCs. This shows that there is a demand for remote sensing data with a high spatial and temporal resolution as well as a methodology to derive WVC warnings considering land use and vegetation. With remote sensing data, it could become possible to classify land use and calculate risk levels for WVC. Additional parameters, derived from remote sensed data that could be considered are relief and crops as well as other parameters such as ponds, natural and infrastructural barriers that could be related to animal behaviour and should be considered by future research.

Author(s):  
R. Pagany ◽  
W. Dorner

During the last years the numbers of wildlife-vehicle-collisions (WVC) in Bavaria increased considerably. Despite the statistical registration of WVC and preventive measures at areas of risk along the roads, the number of such accidents could not be contained. Using geospatial analysis on WVC data of the last five years for county Straubing-Bogen, Bavaria, a small-scale methodology was found to analyse the risk of WVC along the roads in the investigated area. Various indicators were examined, which may be related to WVC. The risk depends on the time of the day and year which shows correlations in turn to the traffic density and wildlife population. Additionally the location of the collision depends on the species and on different environmental parameters. Accidents seem to correlate with the land use left and right of the street. Land use data and current vegetation were derived from remote sensing data, providing information of the general land use, also considering the vegetation period. For this a number of hot spots was selected to identify potential dependencies between land use, vegetation and season. First results from these hotspots show, that WVCs do not only depend on land use, but may show a correlation with the vegetation period. With regard to agriculture and seasonal as well as annual changes this indicates that warnings will fail due to their static character in contrast to the dynamic situation of land use and resulting risk for WVCs. This shows that there is a demand for remote sensing data with a high spatial and temporal resolution as well as a methodology to derive WVC warnings considering land use and vegetation. With remote sensing data, it could become possible to classify land use and calculate risk levels for WVC. Additional parameters, derived from remote sensed data that could be considered are relief and crops as well as other parameters such as ponds, natural and infrastructural barriers that could be related to animal behaviour and should be considered by future research.


2020 ◽  
Vol 12 (24) ◽  
pp. 4190
Author(s):  
Siyamthanda Gxokwe ◽  
Timothy Dube ◽  
Dominic Mazvimavi

Wetlands are ranked as very diverse ecosystems, covering about 4–6% of the global land surface. They occupy the transition zones between aquatic and terrestrial environments, and share characteristics of both zones. Wetlands play critical roles in the hydrological cycle, sustaining livelihoods and aquatic life, and biodiversity. Poor management of wetlands results in the loss of critical ecosystems goods and services. Globally, wetlands are degrading at a fast rate due to global environmental change and anthropogenic activities. This requires holistic monitoring, assessment, and management of wetlands to prevent further degradation and losses. Remote-sensing data offer an opportunity to assess changes in the status of wetlands including their spatial coverage. So far, a number of studies have been conducted using remotely sensed data to assess and monitor wetland status in semi-arid and arid regions. A literature search shows a significant increase in the number of papers published during the 2000–2020 period, with most of these studies being in semi-arid regions in Australia and China, and few in the sub-Saharan Africa. This paper reviews progress made in the use of remote sensing in detecting and monitoring of the semi-arid and arid wetlands, and focuses particularly on new insights in detection and monitoring of wetlands using freely available multispectral sensors. The paper firstly describes important characteristics of wetlands in semi-arid and arid regions that require monitoring in order to improve their management. Secondly, the use of freely available multispectral imagery for compiling wetland inventories is reviewed. Thirdly, the challenges of using freely available multispectral imagery in mapping and monitoring wetlands dynamics like inundation, vegetation cover and extent, are examined. Lastly, algorithms for image classification as well as challenges associated with their uses and possible future research are summarised. However, there are concerns regarding whether the spatial and temporal resolutions of some of the remote-sensing data enable accurate monitoring of wetlands of varying sizes. Furthermore, it was noted that there were challenges associated with the both spatial and spectral resolutions of data used when mapping and monitoring wetlands. However, advancements in remote-sensing and data analytics provides new opportunities for further research on wetland monitoring and assessment across various scales.


2015 ◽  
Vol 19 (1) ◽  
pp. 507-532 ◽  
Author(s):  
P. Karimi ◽  
W. G. M. Bastiaanssen

Abstract. The scarcity of water encourages scientists to develop new analytical tools to enhance water resource management. Water accounting and distributed hydrological models are examples of such tools. Water accounting needs accurate input data for adequate descriptions of water distribution and water depletion in river basins. Ground-based observatories are decreasing, and not generally accessible. Remote sensing data is a suitable alternative to measure the required input variables. This paper reviews the reliability of remote sensing algorithms to accurately determine the spatial distribution of actual evapotranspiration, rainfall and land use. For our validation we used only those papers that covered study periods of seasonal to annual cycles because the accumulated water balance is the primary concern. Review papers covering shorter periods only (days, weeks) were not included in our review. Our review shows that by using remote sensing, the absolute values of evapotranspiration can be estimated with an overall accuracy of 95% (SD 5%) and rainfall with an overall absolute accuracy of 82% (SD 15%). Land use can be identified with an overall accuracy of 85% (SD 7%). Hence, more scientific work is needed to improve the spatial mapping of rainfall and land use using multiple space-borne sensors. While not always perfect at all spatial and temporal scales, seasonally accumulated actual evapotranspiration maps can be used with confidence in water accounting and hydrological modeling.


Author(s):  
Hua Ding ◽  
Ru Ren Li ◽  
Li Shuang Sun ◽  
Xin Wang ◽  
Yu Mei Liu

2021 ◽  
Vol 3 ◽  
pp. 180-185
Author(s):  
Y. M. Kenzhegaliyev ◽  
◽  
◽  

The goal -is to explore ways of using Earth remote sensing data for efficient land use. Methods - detailed information on current location of certain types of agricultural crops in the study areas has been summarized, which opens up opportunities for the effective use of cultivated areas. It was revealed that the basis of the principle of the method under consideration is the relationship between the state and structure of vegetation types with its reflective ability. It has been determined that information on the spectral reflective property of the vegetation cover in the future can help replace more laborious methods of laboratory analysis. For classification of farmland, satellite images of medium spatial resolution with a combination of channels in natural colors were selected. Results - a method for identifying agricultural plants by classification according to the maximum likelihood algorithm was considered. The commonly used complexes of geoinformation software products with modules for special image processing allow displaying indicators in the form of raster images. It is shown that the use of Earth remote sensing data is the most relevant solution in the field of crop recognition and makes it possible to simplify the implementation of such types of work as the analysis of the intensity of land use, the assessment of the degree of pollution with weeds and determination of crop productivity. Conclusions - the research results given in the article indicate that timely information on the current location of certain types of agricultural crops in the studied territories significantly simplifies the implementation of the tasks and increases the resource potential of agricultural lands. In turn, the timing of the survey and the state of environment affect the spectral reflectivity of vegetation.


Author(s):  
K Choudhary ◽  
M S Boori ◽  
A Kupriyanov

The main objective of this study was to detect groundwater availability for agriculture in the Orenburg, Russia. Remote sensing data (RS) and geographic information system (GIS) were used to locate potential zones for groundwater in Orenburg. Diverse maps such as a base map, geomorphological, geological structural, lithology, drainage, slope, land use/cover and groundwater potential zone were prepared using the satellite remote sensing data, ground truth data, and secondary data. ArcGIS software was utilized to manipulate these data sets. The groundwater availability of the study was classified into different classes such as very high, high, moderate, low and very low based on its hydro-geomorphological conditions. The land use/cover map was prepared using a digital classification technique with the limited ground truth for mapping irrigated areas in the Orenburg, Russia.


2021 ◽  
Author(s):  
Peng Liu

In the past decades, remote sensing (RS) data fusion has always been an active research community. A large number of algorithms and models have been developed. Generative Adversarial Networks (GAN), as an important branch of deep learning, show promising performances in variety of RS image fusions. This review provides an introduction to GAN for remote sensing data fusion. We briefly review the frequently-used architecture and characteristics of GAN in data fusion and comprehensively discuss how to use GAN to realize fusion for homogeneous RS data, heterogeneous RS data, and RS and ground observation data. We also analyzed some typical applications with GAN-based RS image fusion. This review takes insight into how to make GAN adapt to different types of fusion tasks and summarizes the advantages and disadvantages of GAN-based RS data fusion. Finally, we discuss the promising future research directions and make a prediction on its trends.


Sign in / Sign up

Export Citation Format

Share Document