scholarly journals Composite Vertical-Motion Patterns near North American Polar–Subtropical Jet Superposition Events

2020 ◽  
Vol 148 (11) ◽  
pp. 4565-4585
Author(s):  
Andrew C. Winters ◽  
Daniel Keyser ◽  
Lance F. Bosart

AbstractA polar–subtropical jet superposition is preceded by the development of a polar cyclonic potential vorticity (PV) anomaly at high latitudes and a tropical anticyclonic PV anomaly at subtropical latitudes. A confluent large-scale flow pattern can lead to the juxtaposition of these respective PV anomalies at middle latitudes, resulting in the addition of the nondivergent circulations induced by each PV anomaly and an increase in upper-tropospheric wind speeds at the location of jet superposition. Once these PV anomalies become juxtaposed, vertical motion within the near-jet environment facilitates the advection and diabatic redistribution of tropopause-level PV, and the subsequent formation of the steep, single-step tropopause structure that characterizes a jet superposition. Given the importance of vertical motion during the formation of jet superpositions, this study adopts a quasigeostrophic (QG) diagnostic approach to quantify the production of vertical motion during three types of jet superposition events: polar dominant, eastern subtropical dominant, and western subtropical dominant. The diagnosis reveals that the geostrophic wind induced by polar cyclonic QGPV anomalies is predominantly responsible for QG vertical motion in the vicinity of jet superpositions. The QG vertical motion diagnosed from the along-isotherm component of the Q vector, which represents the vertical motion associated with synoptic-scale waves, is dominant within the near-jet environment. The QG vertical motion diagnosed from the across-isotherm component of the Q vector, which represents the vertical motion associated with frontal circulations in the vicinity of the jet, is subordinate within the near-jet environment, but is relatively more important during eastern subtropical dominant events compared to polar dominant and western subtropical dominant events.

2008 ◽  
Vol 2 (1) ◽  
pp. 81-87 ◽  
Author(s):  
O. Jorba ◽  
C. Marrero ◽  
E. Cuevas ◽  
J. M. Baldasano

Abstract. On 28–29 November 2005 an extratropical storm affected the Canary Islands causing significant damage related to high average wind speeds and intense gusts over some islands of the archipelago. Delta was the twenty-sixth tropical or subtropical storm of the 2005 Atlantic hurricane season. It represents an unusual meteorological phenomenon for that region, and its impacts were underestimated by the different operational meteorological forecasts during the previous days of the arrival of the low near Canary Islands. The aim of this study is to reproduce the local effects of the flow that were observed over the Canary Islands during the travel of the Delta storm near the region using high-resolution mesoscale meteorological simulations. The Advanced Research Weather Research & Forecasting Model (WRF-ARW) is applied at 9, 3 and 1 km horizontal resolution using ECMWF forecasts as initial and boundary conditions. The high-resolution simulation will outline the main features that contributed to the high wind speeds observed in the archipelago. Variations in vertical static stability, vertical windshear and the intense synoptic winds of the southwestern part of Delta with a warm core at 850 hPa were the main characteristics that contributed to the development and amplification of intense gravity waves while the large-scale flow interacted with the complex topography of the islands.


1999 ◽  
Vol 17 (4) ◽  
pp. 533-546
Author(s):  
A. Elkhalfi

Abstract. The hydrostatic model SALSA is used to simulate a particular event observed during the Greenland Ice Margin EXperiment "GIMEX" (on July 12th, 1991). The time evolution of the large-scale flow was incorporated in the model through time dependent boundary conditions which were updated using the closest upwind sounding. A turbulent scheme for the stable boundary layer and an appropriate parametrization of the surface fluxes implemented in the same model, are used for this study. The simulation results are discussed and compared to the available observations. The computed turbulent fluxes are correctly estimated. The model predicts a mixing zone of about 1500 m high which is in good agreement with tundra site observations. Over the ice cap, the katabatic layer is correctly simulated by the model. Its height of 80-300 m is well estimated. The comparison between the simulation and observations taken at ice cap sites is reasonably valid. The ablation computed along the ice cap corresponds well to the values reconstructed of observations at sites 4 and 9. Finally, a sensibility study to a specified westward geostrophic wind (2 ms-1) shows that the consideration of this latter improves the simulated tundra wind evolution.Key words. Meteorology and atmospheric dynamics (mesoscale meteorology; polar meteorology; turbulance)


2016 ◽  
Vol 29 (13) ◽  
pp. 4723-4740 ◽  
Author(s):  
Ying Li ◽  
David W. J. Thompson

Abstract The signatures of large-scale annular variability on the vertical structure of clouds and cloud radiative effects are examined in vertically resolved CloudSat and other satellite and reanalysis data products. The northern and southern “barotropic” annular modes (the NAM and SAM) have a complex vertical structure. Both are associated with a meridional dipole in clouds between subpolar and middle latitudes, but the sign of the anomalies changes between upper, middle, and lower tropospheric levels. In contrast, the northern and southern baroclinic annular modes have a much simpler vertical structure. Both are linked to same-signed anomalies in clouds extending throughout the troposphere at middle to high latitudes. The changes in cloud incidence associated with both the barotropic and baroclinic annular modes are consistent with dynamical forcing by the attendant changes in static stability and/or vertical motion. The results also provide the first observational estimates of the vertically resolved atmospheric cloud radiative effects associated with hemispheric-scale extratropical variability. In general, the anomalies in atmospheric cloud radiative effects associated with the annular modes peak in the middle to upper troposphere, and are consistent with the anomalous trapping of longwave radiation by variations in upper tropospheric clouds. The southern baroclinic annular mode gives rise to periodic behavior in longwave cloud radiative effects at the top of the atmosphere averaged over Southern Hemisphere midlatitudes.


2021 ◽  
Vol 60 (4) ◽  
pp. 577-594
Author(s):  
Paul E. Ciesielski ◽  
Richard H. Johnson

AbstractDuring the Dynamics of the MJO (DYNAMO) field campaign, radiosonde launches were regularly conducted from three small islands/atolls (Malé and Gan, Maldives, and Diego Garcia, British Indian Ocean Territory) as part of a large-scale sounding network. Comparison of island upsondes with nearby and near-contemporaneous dropsondes over the ocean provides evidence for the magnitude and scope of the islands’ influence on the surrounding atmosphere and on the island upsonde profiles. The island’s impact on the upsonde data is most prominent in the lowest 200 m. Noting that the vertical gradients of temperature, moisture, and winds over the ocean are generally constant in the lowest 0.5 km of dropsondes, a simple procedure was constructed to adjust the upsonde profiles in the lowest few hundred meters to resemble the atmospheric structures over the open ocean. This procedure was applied to the soundings from the three islands mentioned above for the October–December 2011 period of DYNAMO. As a result of this procedure, the adjusted diurnal cycle amplitude of surface temperature is reduced fivefold, resembling that over the ocean, and low-level wind speeds are increased in ~90% of the island soundings. Examination of the impact of these sounding adjustments shows that dynamical and budget fields are primarily affected by adjustments to the wind field, whereas convective parameters are sensitive to the adjustments in thermodynamic fields. Although the impact of the adjustments is generally small (on the order of a few percent), intraseasonal wind regime changes result in some systematic variations in divergence and vertical motion over the sounding arrays.


2004 ◽  
Vol 61 (23) ◽  
pp. 2846-2862 ◽  
Author(s):  
Saša Gaberšek ◽  
Dale R. Durran

Abstract Gap winds produced by a uniform airstream flowing over an isolated flat-top ridge cut by a straight narrow gap are investigated by numerical simulation. On the scale of the entire barrier, the proportion of the oncoming flow that passes through the gap is relatively independent of the nondimensional mountain height ε, even over that range of ε for which there is the previously documented transition from a “flow over the ridge” regime to a “flow around” regime. The kinematics and dynamics of the gap flow itself were investigated by examining mass and momentum budgets for control volumes at the entrance, central, and exit regions of the gap. These analyses suggest three basic behaviors: the linear regime (small ε) in which there is essentially no enhancement of the gap flow; the mountain wave regime (ε ∼ 1.5) in which vertical mass and momentum fluxes play a crucial role in creating very strong winds near the exit of the gap; and the upstream-blocking regime (ε ∼ 5) in which lateral convergence generates the strongest winds near the entrance of the gap. Trajectory analysis of the flow in the strongest events, the mountain wave events, confirms the importance of net subsidence in creating high wind speeds. Neglect of vertical motion in applications of Bernoulli's equation to gap flows is shown to lead to unreasonable wind speed predictions whenever the temperature at the gap exit exceeds that at the gap entrance. The distribution of the Bernoulli function on an isentropic surface shows a correspondence between regions of high Bernoulli function and high wind speeds in the gap-exit jet similar to that previously documented for shallow-water flow.


Author(s):  
Na Li ◽  
Baofeng Jiao ◽  
Lingkun Ran ◽  
Zongting Gao ◽  
Shouting Gao

AbstractWe investigated the influence of upstream terrain on the formation of a cold frontal snowband in Northeast China. We conducted numerical sensitivity experiments that gradually removed the upstream terrain and compared the results with a control experiment. Our results indicate a clear negative effect of upstream terrain on the formation of snowbands, especially over large-scale terrain. By thoroughly examining the ingredients necessary for snowfall (instability, lifting and moisture), we found that the release of mid-level conditional instability, followed by the release of low-level or near surface instabilities (inertial instability, conditional instability or conditional symmetrical instability), contributed to formation of the snowband in both experiments. The lifting required for the release of these instabilities was mainly a result of frontogenetic forcing and upper gravity waves. However, the snowband in the control experiment developed later and was weaker than that in the experiment without upstream terrain. Two factors contributed to this negative topographic effect: (1) the mountain gravity waves over the upstream terrain, which perturbed the frontogenetic circulation by rapidly changing the vertical motion and therefore did not favor the release of instabilities in the absence of persistent ascending motion; and (2) the decrease in the supply of moisture as a result of blocking of the upstream terrain, which changed both the moisture and instability structures leeward of the mountains. A conceptual model is presented that shows the effects of the instabilities and lifting on the development of cold frontal snowbands in downstream mountains.


2001 ◽  
Vol 9 (1) ◽  
pp. 3-7
Author(s):  
Damon Liu ◽  
Mark Burgin ◽  
Walter Karplus ◽  
Daniel Valentino

Author(s):  
Yanzhe Sun ◽  
Kai Sun ◽  
Tianyou Wang ◽  
Yufeng Li ◽  
Zhen Lu

Emission and fuel consumption in swirl-supported diesel engines strongly depend on the in-cylinder turbulent flows. But the physical effects of squish flow on the tangential flow and turbulence production are still far from well understood. To identify the effects of squish flow, Particle image velocimetry (PIV) experiments are performed in a motored optical diesel engine equipped with different bowls. By comparing and associating the large-scale flow and turbulent kinetic energy (k), the main effects of the squish flow are clarified. The effect of squish flow on the turbulence production in the r−θ plane lies in the axial-asymmetry of the annular distribution of radial flow and the deviation between the ensemble-averaged swirl field and rigid body swirl field. Larger squish flow could promote the swirl center to move to the cylinder axis and reduce the deformation of swirl center, which could decrease the axial-asymmetry of annular distribution of radial flow, further, that results in a lower turbulence production of the shear stress. Moreover, larger squish flow increases the radial fluctuation velocity which makes a similar contribution to k with the tangential component. The understanding of the squish flow and its correlations with tangential flow and turbulence obtained in this study is beneficial to design and optimize the in-cylinder turbulent flow.


Sign in / Sign up

Export Citation Format

Share Document