Observations of Atypical Rapid Intensification Characteristics in Hurricane Dorian (2019)

Author(s):  
David R. Ryglicki ◽  
Christopher S. Velden ◽  
Paul D. Reasor ◽  
Daniel Hodyss ◽  
James D. Doyle

AbstractMultiple observation and analysis datasets are used to demonstrate two key features of the Atypical Rapid Intensification (ARI) process that occurred in Atlantic Hurricane Dorian (2019): 1) precession and nutations of the vortex tilt and 2) blocking of the impinging upper-level environmental flow by the outflow. As Dorian came under the influence of an upper-level anticyclone, traditional methods of estimating vertical wind shear all indicated relatively low values were acting on the storm; however, high-spatiotemporal-resolution atmospheric motion vectors (AMVs) indicated that the environmental flow at upper levels was actually impinging on the vortex core, resulting in a vertical tilt. We employ a novel ensemble of centers of individual swaths of dual-Doppler radar data from WP-3D aircraft to characterize the precession and wobble of the vortex tilt. This tilting and wobbling preceded a sequence of outflow surges that acted to repel the impinging environmental flow, thereby reducing the shear and permitting ARI. We then apply prior methodology on satellite imagery for distinguishing ARI features. Finally, we use the AMV dataset to experiment with different shear calculations and show that the upper-level cross-vortex flow approaches zero. We discuss the implication of these results with regards to prior works on ARI and intensification in shear.

2015 ◽  
Vol 143 (6) ◽  
pp. 2207-2223 ◽  
Author(s):  
Gabriel Susca-Lopata ◽  
Jonathan Zawislak ◽  
Edward J. Zipser ◽  
Robert F. Rogers

Abstract An investigation into the possible causes of the rapid intensification (RI) of Hurricane Earl (2010) is carried out using a combination of global analyses, aircraft Doppler radar data, and observations from passive microwave satellites and a long-range lightning network. Results point to an important series of events leading to, and just after, the onset of RI, all of which occur despite moderate (7–12 m s−1) vertical wind shear present. Beginning with an initially vertically misaligned vortex, observations indicate that asymmetric deep convection, initially left of shear but not distinctly up- or downshear, rotates into more decisively upshear regions. Following this convective rotation, the vortex becomes aligned and precipitation symmetry increases. The potential contributions to intensification from each of these structural changes are discussed. The radial distribution of intense convection relative to the radius of maximum wind (RMW; determined from Doppler wind retrievals) is estimated from microwave and lightning data. Results indicate that intense convection is preferentially located within the upper-level (8 km) RMW during RI, lending further support to the notion that intense convection within the RMW promotes tropical cyclone intensification. The distribution relative to the low-level RMW is more ambiguous, with intense convection preferentially located just outside of the low-level RMW at times when the upper-level RMW is much greater than the low-level RMW.


2019 ◽  
Vol 147 (8) ◽  
pp. 2919-2940 ◽  
Author(s):  
David R. Ryglicki ◽  
James D. Doyle ◽  
Daniel Hodyss ◽  
Joshua H. Cossuth ◽  
Yi Jin ◽  
...  

Abstract Interactions between the upper-level outflow of a sheared, rapidly intensifying tropical cyclone (TC) and the background environmental flow in an idealized model are presented. The most important finding is that the divergent outflow from convection localized by the tilt of the vortex serves to divert the background environmental flow around the TC, thus reducing the local vertical wind shear. We show that this effect can be understood from basic theoretical arguments related to Bernoulli flow around an obstacle. In the simulation discussed, the environmental flow diversion by the outflow is limited to 2 km below the tropopause in the 12–14-km (250–150 hPa) layer. Synthetic water vapor satellite imagery confirms the presence of upshear arcs in the cloud field, matching satellite observations. These arcs, which exist in the same layer as the outflow, are caused by slow-moving wave features and serve as visual markers of the outflow–environment interface. The blocking effect where the outflow and the environmental winds meet creates a dynamic high pressure whose pressure gradient extends nearly 1000 km upwind, thus causing the environmental winds to slow down, to converge, and to sink. We discuss these results with respect to the first part of this three-part study, and apply them to another atypical rapid intensification hurricane: Matthew (2016).


Author(s):  
George R. Alvey ◽  
Michael Fischer ◽  
Paul Reasor ◽  
Jonathan Zawislak ◽  
Robert Rogers

AbstractDorian’s evolution from a weak, disorganized tropical storm to a rapidly intensifying hurricane is documented through a unique multi-platform synthesis of NOAA’s P-3 tail-Doppler radar, airborne in situ data, and Meteo-France’s Martinique and Guadeloupe ground radar network. Dorian initially struggled to intensify with a misaligned vortex in moderate mid-tropospheric vertical wind shear that also allowed detrimental impacts from dry air near the inner core. Despite vertical wind shear eventually decreasing to less than 5 m/s and an increasingly symmetric distribution of stratiform precipitation, the vortex maintained its misalignment with asymmetric convection for 12 hours. Then, as the low-level circulation (LLC) approached St. Lucia, deep convection near the LLC’s center dissipated, the LLC broadened, and precipitation expanded radially outwards from the center temporally coinciding with the diurnal cycle. Convection then developed farther downtilt within a more favorable, humid environment and deepened appreciably at least partially due to interaction with Martinique. A distinct repositioning of the LLC towards Martinique is induced by spin-up of a mesovortex into a small, compact LLC.It is hypothesized that this somewhat atypical reformation event and the repositioning of the vortex into a more favorable environment, farther from detrimental dry mid-tropospheric air, increased its favorability for the rapid intensification that subsequently ensued. Although the repositioning resulted in tilt reducing to less than the scale of the vortex itself, the pre-existing broad mid-upper level cyclonic envelope remained intact with continued misalignment observed between the mid-level center and repositioned LLC even during the early stages of rapid intensification.


2018 ◽  
Vol 146 (11) ◽  
pp. 3773-3800 ◽  
Author(s):  
David R. Ryglicki ◽  
Joshua H. Cossuth ◽  
Daniel Hodyss ◽  
James D. Doyle

Abstract A satellite-based investigation is performed of a class of tropical cyclones (TCs) that unexpectedly undergo rapid intensification (RI) in moderate vertical wind shear between 5 and 10 m s−1 calculated as 200–850-hPa shear. This study makes use of both infrared (IR; 11 μm) and water vapor (WV; 6.5 μm) geostationary satellite data, the Statistical Hurricane Prediction Intensity System (SHIPS), and model reanalyses to highlight commonalities of the six TCs. The commonalities serve as predictive guides for forecasters and common features that can be used to constrain and verify idealized modeling studies. Each of the TCs exhibits a convective cloud structure that is identified as a tilt-modulated convective asymmetry (TCA). These TCAs share similar shapes, upshear-relative positions, and IR cloud-top temperatures (below −70°C). They pulse over the core of the TC with a periodicity of between 4 and 8 h. Using WV satellite imagery, two additional features identified are asymmetric warming/drying upshear of the TC relative to downshear, as well as radially thin arc-shaped clouds on the upshear side. The WV brightness temperatures of these arcs are between −40° and −60°C. All of the TCs are sheared by upper-level anticyclones, which limits the strongest environmental winds to near the tropopause.


2016 ◽  
Vol 144 (11) ◽  
pp. 4395-4420 ◽  
Author(s):  
Falko Judt ◽  
Shuyi S. Chen

Abstract Rapid intensification (RI) of tropical cyclones (TCs) remains one of the most challenging issues in TC prediction. This study investigates the predictability of RI, the uncertainty in predicting RI timing, and the dynamical processes associated with RI. To address the question of environmental versus internal control of RI, five high-resolution ensembles of Hurricane Earl (2010) were generated with scale-dependent stochastic perturbations from synoptic to convective scales. Although most members undergo RI and intensify into major hurricanes, the timing of RI is highly uncertain. While environmental conditions including SST control the maximum TC intensity and the likelihood of RI during the TC lifetime, both environmental and internal factors contribute to uncertainty in RI timing. Complex interactions among environmental vertical wind shear, the mean vortex, and internal convective processes govern the TC intensification process and lead to diverse pathways to maturity. Although the likelihood of Earl undergoing RI seems to be predictable, the exact timing of RI has a stochastic component and low predictability. Despite RI timing uncertainty, two dominant modes of RI emerged. One group of members undergoes RI early in the storm life cycle; the other one later. In the early RI cases, a rapidly contracting radius of maximum wind accompanies the development of the eyewall during RI. The late RI cases have a well-developed eyewall prior to RI, while an upper-level warm core forms during the RI process. These differences indicate that RI is associated with distinct physical processes during particular stages of the TC life cycle.


Author(s):  
Ting-Yu Cha ◽  
Michael M. Bell ◽  
Alexander J. DesRosiers

AbstractHurricane Matthew (2016) was observed by ground-based polarimetric radars in Miami (KAMX), Melbourne (KMLB), and Jacksonville (KJAX) and a NOAA P3 airborne tail Doppler radar near the coast of the southeastern United States during an eyewall replacement cycle (ERC). The radar observations indicate that Matthew’s primary eyewall was replaced with a weaker outer eyewall, but unlike a classic ERC, Matthew did not reintensify after the inner eyewall disappeared. Triple Doppler analysis was calculated from the NOAA P3 airborne fore and aft radar scanning combined with the KAMX radar data during the period of secondary eyewall intensification and inner eyewall weakening from 19 UTC 6 October to 00 UTC 7 October. Four flight passes of the P3 aircraft show the evolution of the reflectivity, tangential winds, and secondary circulation as the outer eyewall became well-established. Further evolution of the ERC is analyzed from the ground-based single Doppler radar observations for 35 hours with high temporal resolution at a 5-minute interval from 19 UTC 6 October to 00 UTC 8 October using the Generalized Velocity Track Display (GVTD) technique. The single-Doppler analyses indicate that the inner eyewall decayed a few hours after the P3 flight, while the outer eyewall contracted but did not reintensify and the asymmetries increased episodically. The analysis suggests that the ERC process was influenced by a complex combination of environmental vertical wind shear, an evolving axisymmetric secondary circulation, and an asymmetric vortex Rossby wave damping mechanism that promoted vortex resiliency despite increasing shear.


Author(s):  
Annette M. Boehm ◽  
Michael M. Bell

AbstractThe newly developed SAMURAI-TR is used to estimate three-dimensional temperature and pressure perturbations in Hurricane Rita on 23 September 2005 from multi-Doppler radar data during the RAINEX field campaign. These are believed to be the first fully three-dimensional gridded thermodynamic observations from a TC. Rita was a major hurricane at this time and was affected by 13 m s−1 deep-layer vertical wind shear. Analysis of the contributions of the kinematic and retrieved thermodynamic fields to different azimuthal wavenumbers suggests the interpretation of eyewall convective forcing within a three-level framework of balanced, quasi-balanced, and unbalanced motions. The axisymmetric, wavenumber-0 structure was approximately in thermal-wind balance, resulting in a large pressure drop and temperature increase toward the center. The wavenumber-1 structure was determined by the interaction of the storm with environmental vertical wind shear resulting in a quasi-balance between shear and shear-induced kinematic and thermo-dynamic perturbations. The observed wavenumber-1 thermodynamic asymmetries corroborate results of previous studies on the response of a vortex tilted by shear, and add new evidence that the vertical motion is nearly hydrostatic on the wavenumber-1 scale. Higher-order wavenumbers were associated with unbalanced motions and convective cells within the eyewall. The unbalanced vertical acceleration was positively correlated with buoyant forcing from thermal perturbations and negatively correlated with perturbation pressure gradients relative to the balanced vortex.


2011 ◽  
Vol 68 (3) ◽  
pp. 477-494 ◽  
Author(s):  
Alexandre O. Fierro ◽  
Jon M. Reisner

Abstract In this paper, a high-resolution simulation establishing relationships between lightning and eyewall convection during the rapid intensification phase of Rita will be highlighted. The simulation is an attempt to relate simulated lightning activity within strong convective events (CEs) found within the eyewall and general storm properties for a case from which high-fidelity lightning observations are available. Specifically, the analysis focuses on two electrically active eyewall CEs that had properties similar to events observed by the Los Alamos Sferic Array. The numerically simulated CEs were characterized by updraft speeds exceeding 10 m s−1, a relatively more frequent flash rate confined in a layer between 10 and 14 km, and a propagation speed that was about 10 m s−1 less than of the local azimuthal flow in the eyewall. Within an hour of the first CE, the simulated minimum surface pressure dropped by approximately 5 mb. Concurrent with the pulse of vertical motions was a large uptake in lightning activity. This modeled relationship between enhanced vertical motions, a noticeable pressure drop, and heightened lightning activity suggests the utility of using lightning to remotely diagnose future changes in intensity of some tropical cyclones. Furthermore, given that the model can relate lightning activity to latent heat release, this functional relationship, once validated against a derived field produced by dual-Doppler radar data, could be used in the future to initialize eyewall convection via the introduction of latent heat and/or water vapor into a hurricane model.


2013 ◽  
Vol 2013 ◽  
pp. 1-18
Author(s):  
Edward Natenberg ◽  
Jidong Gao ◽  
Ming Xue ◽  
Frederick H. Carr

A three-dimensional variational (3DVAR) assimilation technique developed for a convective-scale NWP model—advanced regional prediction system (ARPS)—is used to analyze the 8 May 2003, Moore/Midwest City, Oklahoma tornadic supercell thunderstorm. Previous studies on this case used only one or two radars that are very close to this storm. However, three other radars observed the upper-level part of the storm. Because these three radars are located far away from the targeted storm, they were overlooked by previous studies. High-frequency intermittent 3DVAR analyses are performed using the data from five radars that together provide a more complete picture of this storm. The analyses capture a well-defined mesocyclone in the midlevels and the wind circulation associated with a hook-shaped echo. The analyses produced through this technique are used as initial conditions for a 40-minute storm-scale forecast. The impact of multiple radars on a short-term NWP forecast is most evident when compared to forecasts using data from only one and two radars. The use of all radars provides the best forecast in which a strong low-level mesocyclone develops and tracks in close proximity to the actual tornado damage path.


2015 ◽  
Vol 72 (11) ◽  
pp. 4194-4217 ◽  
Author(s):  
Sachie Kanada ◽  
Akiyoshi Wada

Abstract Extremely rapid intensification (ERI) of Typhoon Ida (1958) was examined with a 2-km-mesh nonhydrostatic model initiated at three different times. Ida was an extremely intense tropical cyclone with a minimum central pressure of 877 hPa. The maximum central pressure drop in 24 h exceeded 90 hPa. ERI was successfully simulated in two of the three experiments. A factor crucial to simulating ERI was a combination of shallow-to-moderate convection and tall, upright convective bursts (CBs). Under a strong environmental vertical wind shear (>10 m s−1), shallow-to-moderate convection on the downshear side that occurred around the intense near-surface inflow moistened the inner-core area. Meanwhile, dry subsiding flows on the upshear side helped intensification of midlevel (8 km) inertial stability. First, a midlevel warm core appeared below 10 km in the shallow-to-moderate convection areas, being followed by the development of the upper-level warm core associated with tall convection. When tall, upright, rotating CBs formed from the leading edge of the intense near-surface inflow, ERI was triggered at the area in which the air became warm and humid. CBs penetrated into the upper troposphere, aligning the areas with high vertical vorticity at low to midlevels. The upper-level warm core developed rapidly in combination with the midlevel warm core. Under the preconditioned environment, the formation of the upright CBs inside the radius of maximum wind speeds led to an upright axis of the secondary circulation within high inertial stability, resulting in a very rapid central pressure deepening.


Sign in / Sign up

Export Citation Format

Share Document