The September 2020 Wildfires over the Pacific Northwest

Author(s):  
Clifford F. Mass ◽  
David Ovens ◽  
Robert Conrick ◽  
John Saltenberger

AbstractA series of major fires spread across eastern Washington and western Oregon starting on September 7, 2020, driven by strong easterly and northeasterly winds gusting to ~70 kt at exposed locations. This event was associated with a high-amplitude upper-level ridge over the eastern Pacific and a mobile trough that moved southward on its eastern flank. The synoptic environment during the event was highly unusual, with the easterly 925-hPa wind speeds at Salem, Oregon, being unprecedented for the August-September period. The September 2020 wildfires produced dense smoke that initially moved westward over the Willamette Valley and eventually covered the region. As a result, air quality rapidly degraded to hazardous levels, representing the worst air quality period of recent decades. High-resolution numerical simulations using the WRF model indicated the importance of a high-amplitude mountain wave in producing strong easterly winds over western Oregon.The dead fuel moisture levels over eastern Washington before the fires were typical for that time of the year. Along the western slopes of the Oregon Cascades, where the fuels are largely comprised of a dense conifer forest with understory vegetation, fire weather indices were lower (moister) than normal during the early part of the summer, but transitioned to above-normal (drier) values during August, with a spike to record values in early September coincident with the strong easterly winds.Forecast guidance was highly accurate for both the Washington and Oregon wildfire events. Analyses of climatological data and fuel indices did not suggest that unusual pre-existing climatic conditions were major drivers of the September 2020 Northwest wildfires.

2014 ◽  
Vol 29 (5) ◽  
pp. 1208-1228 ◽  
Author(s):  
Matthew C. Brewer ◽  
Clifford F. Mass

Abstract During the summer, strong surface heating combines with the terrain and land–water contrasts of the northwest United States to create a complex array of diurnal circulations. Though observational and modeling studies have described some of these circulations, advances in high-resolution numerical modeling allow for a more comprehensive and three-dimensional examination. To simulate typical summer conditions over the Pacific Northwest, 3-hourly Global Forecast System (GFS) model output for July and August 2009–11 was used to initialize and provide boundary conditions for a high-resolution Weather Research and Forecasting (WRF) Model run. To ensure the realism of the simulation, it was compared to observations from a collection of days representing typical summer conditions. Generally, it was found that the simulated diurnal wind, relative humidity, and temperature were close to the observations. It is shown that regional diurnal circulations over the Pacific Northwest occur on a number of interacting scales, ranging from upslope/downslope winds on local terrain features to larger-scale circulations such as between the Pacific Ocean and the western Oregon and Washington interiors. Such multiscale diurnal circulations occur concurrently, with the interactions producing complex structures, several of which are described in this paper. Wind speeds in the Strait of Juan de Fuca and downstream of the major Cascade Mountain gaps reach maxima between 2100 and 2400 local daylight time (LDT), while most other areas have peak winds earlier in the day. Localized nocturnal low-level wind maxima are described, including one over the northern Willamette Valley and another over the high plateau of eastern Oregon.


1953 ◽  
Vol 22 (3) ◽  
pp. 219-226
Author(s):  
Thomas E. Jessett

Most historians of the Pacific Northwest attribute the beginning of Christian missions in the old Oregon country to the appearance at St. Louis, Missouri, in the fall of 1831 of four Nez Perce Indians. According to Protestant sources these Indians were seeking the “Book of Life;” according to Roman Catholics they sought the “Blackrobes,” as the Jesuit missionaries were known. Some modern historians, unable to account for the Indians' interest in Christianity, have even asserted that they had no religious interest at all. The publicity given this event caused the Methodist Church to send out the Reverend Jason Lee in 1834, and the American Board of Commissioners for Foreign Missions to send out the Reverend Samuel Parker in 1835. As a result of these exploratory trips the Methodists established themselves in the Willamette Valley and the American Board sent Marcus Whitman, Henry Spalding and W. H. Gray in 1836 and Cushing Eells, Elkanah Walker and A. B. Smith in 1838 into the area of eastern Washington and Idaho now called the Inland Empire. The Roman Catholic priests, Fathers DeMers and Blanchet, arrived at Fort Vancouver in the fall of 1838.


2021 ◽  
Vol 13 (8) ◽  
pp. 4139
Author(s):  
Muriel Diaz ◽  
Mario Cools ◽  
Maureen Trebilcock ◽  
Beatriz Piderit-Moreno ◽  
Shady Attia

Between the ages of 6 and 18, children spend between 30 and 42 h a week at school, mostly indoors, where indoor environmental quality is usually deficient and does not favor learning. The difficulty of delivering indoor air quality (IAQ) in learning facilities is related to high occupancy rates and low interaction levels with windows. In non-industrialized countries, as in the cases presented, most classrooms have no mechanical ventilation, due to energy poverty and lack of normative requirements. This fact heavily impacts the indoor air quality and students’ learning outcomes. The aim of the paper is to identify the factors that determine acceptable CO2 concentrations. Therefore, it studies air quality in free-running and naturally ventilated primary schools in Chile, aiming to identify the impact of contextual, occupant, and building design factors, using CO2 concentration as a proxy for IAQ. The monitoring of CO2, temperature, and humidity revealed that indoor air CO2 concentration is above 1400 ppm most of the time, with peaks of 5000 ppm during the day, especially in winter. The statistical analysis indicates that CO2 is dependent on climate, seasonality, and indoor temperature, while it is independent of outside temperature in heated classrooms. The odds of having acceptable concentrations of CO2 are bigger when indoor temperatures are high, and there is a need to ventilate for cooling.


Author(s):  
Zhiyuan Wang ◽  
Xiaoyi Shi ◽  
Chunhua Pan ◽  
Sisi Wang

Exploring the relationship between environmental air quality (EAQ) and climatic conditions on a large scale can help better understand the main distribution characteristics and the mechanisms of EAQ in China, which is significant for the implementation of policies of joint prevention and control of regional air pollution. In this study, we used the concentrations of six conventional air pollutants, i.e., carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), fine particulate matter (PM2.5), coarse particulate matter (PM10), and ozone (O3), derived from about 1300 monitoring sites in eastern China (EC) from January 2015 to December 2018. Exploiting the grading concentration limit (GB3095-2012) of various pollutants in China, we also calculated the monthly average air quality index (AQI) in EC. The results show that, generally, the EAQ has improved in all seasons in EC from 2015 to 2018. In particular, the concentrations of conventional air pollutants, such as CO, SO2, and NO2, have been decreasing year by year. However, the concentrations of particulate matter, such as PM2.5 and PM10, have changed little, and the O3 concentration increased from 2015 to 2018. Empirical mode decomposition (EOF) was used to analyze the major patterns of AQI in EC. The first mode (EOF1) was characterized by a uniform structure in AQI over EC. These phenomena are due to the precipitation variability associated with the East Asian summer monsoon (EASM), referred to as the “summer–winter” pattern. The second EOF mode (EOF2) showed that the AQI over EC is a north–south dipole pattern, which is bound by the Qinling Mountains and Huaihe River (about 35° N). The EOF2 is mainly caused by seasonal variations of the mixed concentration of PM2.5 and O3. Associated with EOF2, the Mongolia–Siberian High influences the AQI variation over northern EC by dominating the low-level winds (10 m and 850 hPa) in autumn and winter, and precipitation affects the AQI variation over southern EC in spring and summer.


2017 ◽  
Vol 17 (11) ◽  
pp. 7261-7276 ◽  
Author(s):  
Tobias Wolf-Grosse ◽  
Igor Esau ◽  
Joachim Reuder

Abstract. Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s−1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES) experiments with the Parallelised Large-Eddy Simulation Model (PALM) for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a relatively small local water body acted as a barrier for the horizontal transport of air pollutants from the largest street in the valley and along the valley bottom, transporting them vertically instead and hence diluting them. We found that the stable stratification accumulates the street-level pollution from the transport corridor in shallow air pockets near the surface. The polluted air pockets are transported by the local recirculations to other less polluted areas with only slow dilution. This combination of relatively long distance and complex transport paths together with weak dispersion is not sufficiently resolved in classical air pollution models. The findings have important implications for the air quality predictions over urban areas. Any prediction not resolving these, or similar local dynamic features, might not be able to correctly simulate the dispersion of pollutants in cities.


2016 ◽  
Vol 16 (18) ◽  
pp. 12329-12345 ◽  
Author(s):  
Jessie M. Creamean ◽  
Paul J. Neiman ◽  
Timothy Coleman ◽  
Christoph J. Senff ◽  
Guillaume Kirgis ◽  
...  

Abstract. Biomass burning plumes containing aerosols from forest fires can be transported long distances, which can ultimately impact climate and air quality in regions far from the source. Interestingly, these fires can inject aerosols other than smoke into the atmosphere, which very few studies have evidenced. Here, we demonstrate a set of case studies of long-range transport of mineral dust aerosols in addition to smoke from numerous fires (including predominantly forest fires and a few grass/shrub fires) in the Pacific Northwest to Colorado, US. These aerosols were detected in Boulder, Colorado, along the Front Range using beta-ray attenuation and energy-dispersive X-ray fluorescence spectroscopy, and corroborated with satellite-borne lidar observations of smoke and dust. Further, we examined the transport pathways of these aerosols using air mass trajectory analysis and regional- and synoptic-scale meteorological dynamics. Three separate events with poor air quality and increased mass concentrations of metals from biomass burning (S and K) and minerals (Al, Si, Ca, Fe, and Ti) occurred due to the introduction of smoke and dust from regional- and synoptic-scale winds. Cleaner time periods with good air quality and lesser concentrations of biomass burning and mineral metals between the haze events were due to the advection of smoke and dust away from the region. Dust and smoke present in biomass burning haze can have diverse impacts on visibility, health, cloud formation, and surface radiation. Thus, it is important to understand how aerosol populations can be influenced by long-range-transported aerosols, particularly those emitted from large source contributors such as wildfires.


2015 ◽  
Vol 4 (6) ◽  
pp. 23-26
Author(s):  
Литвинова ◽  
Natalya Litvinova

The article presents the results of field studies of air quality depending on mobile sources of pollution. Studies of the carbon monoxide concentration was conducted for the climatic conditions of the South of Western Siberia. The object of the study was residential buildings. The studies were conducted under unfavorable wind speed. Processing of experimental data allowed to obtain the calculated dependences of dimensionless concentration of carbon monoxide (II) on the height of building’s facade under emissions from highways. According to the results of research a nomogram was constructed to determine the optimal air intake height of buildings located near roads of various traffic intensity. Research results and given recommendations allow considering external sources of pollution when designing ventilation of a building.


Plant Disease ◽  
2009 ◽  
Vol 93 (6) ◽  
pp. 673-673 ◽  
Author(s):  
C. J. Li ◽  
Z. F. Wang ◽  
N. Chen ◽  
Z. B. Nan

Orchardgrass or cocksfoot (Dactylis glomerata L.) has been widely cultivated as a forage crop in many provinces of China (1). It is also a native perennial forage grass, which grows at the edge of forests, shrubs, and mountainous grasslands in Xinjiang and Sichuan (2). In September of 2007, signs of choke disease on orchardgrass were observed in a native grassland under birch woodland near Altai City, Xinjiang, China. Stromata, which formed on culms of diseased grass, enclosing the inflorescence and leaf sheath, were 4.5 to 5.5 mm long, smooth or wrinkled, white and later becoming yellowish or yellow, tuberculate, dry, and covered with perithecia. Inflorescences surrounded by fungal stromata were choked and failed to mature, thus restricting seed production. Pure cultures were obtained by directly scraping stromata from the surface and incubating it on antibiotic potato dextrose agar (PDA). The colonies were cottony, white on the upper surface, and white to yellow on the reverse. The growth rate was 13 to 21 mm per week at 25°C on PDA. Conidia were hyaline, lunate to reniform, and measured 4.1 ± 0.5 × 2.2 ± 0.5 μm. They accumulated in small globose heads at the tips of conidiogenous cells and were produced singly on conidiophores of 13 to 33 μm long and 2.7 to 4.1 μm wide at the base. Internal transcribed spacer (ITS) sequence by BLAST search had 99% similarity with an Epichloë typhina isolate of orchardgrass in Spain (GenBank Accession No. AM262420.1). Cultural characteristics, microscopic examination, and phylogenetic analysis showed that this choke disease on D. glomerata was caused by the fungus E. typhina (Pers.) Tul. & C. Tul. as described by White (4). To our knowledge, this is the first report of E. typhina causing choke disease on orchardgrass in China. The pathogen has been identified in France, England, Germany, Sweden, Switzerland, and the United States (3,4) with the same symptoms as those reported here. In 1997, choke disease was found in 70% of the fields in the Willamette Valley of Oregon, with disease incidences ranging from 0.05 to 28%. It was predicted to increase and spread under the prevailing climatic conditions (3). This new disease report is to provide observational and diagnostic information to help with recognition and prevention of disease spread in orchardgrass cultivation regions of China. References: (1) X. R. Chao et al. Shandong Agric. Sci. 1:7, 2005. (2) S. X. Jia, ed. China Forage Plant Flora. China Agriculture Press, Beijing, 1987. (3) W. F. Pfender and S. C. Alderman. Plant Dis. 83:754, 1999. (4) J. W. White. Mycologia 85:444, 1993.


2021 ◽  
pp. 1-56

This paper describes the downscaling of an ensemble of twelve GCMs using the WRF model at 12-km grid spacing over the period 1970-2099, examining the mesoscale impacts of global warming as well as the uncertainties in its mesoscale expression. The RCP 8.5 emissions scenario was used to drive both global and regional climate models. The regional climate modeling system reduced bias and improved realism for a historical period, in contrast to substantial errors for the GCM simulations driven by lack of resolution. The regional climate ensemble indicated several mesoscale responses to global warming that were not apparent in the global model simulations, such as enhanced continental interior warming during both winter and summer as well as increasing winter precipitation trends over the windward slopes of regional terrain, with declining trends to the lee of major barriers. During summer there is general drying, except to the east of the Cascades. April 1 snowpack declines are large over the lower to middle slopes of regional terrain, with small snowpack increases over the lower elevations of the interior. Snow-albedo feedbacks are very different between GCM and RCM projections, with the GCM’s producing large, unphysical areas of snowpack loss and enhanced warming. Daily average winds change little under global warming, but maximum easterly winds decline modestly, driven by a preferential sea level pressure decline over the continental interior. Although temperatures warm continuously over the domain after approximately 2010, with slight acceleration over time, occurrences of temperature extremes increase rapidly during the second half of the 21st century.


Sign in / Sign up

Export Citation Format

Share Document