scholarly journals Short-Range Ensemble Forecasts of Precipitation Type

2005 ◽  
Vol 20 (4) ◽  
pp. 609-626 ◽  
Author(s):  
Matthew S. Wandishin ◽  
Michael E. Baldwin ◽  
Steven L. Mullen ◽  
John V. Cortinas

Abstract Short-range ensemble forecasting is extended to a critical winter weather problem: forecasting precipitation type. Forecast soundings from the operational NCEP Short-Range Ensemble Forecast system are combined with five precipitation-type algorithms to produce probabilistic forecasts from January through March 2002. Thus the ensemble combines model diversity, initial condition diversity, and postprocessing algorithm diversity. All verification numbers are conditioned on both the ensemble and observations recording some form of precipitation. This separates the forecast of type from the yes–no precipitation forecast. The ensemble is very skillful in forecasting rain and snow but it is only moderately skillful for freezing rain and unskillful for ice pellets. However, even for the unskillful forecasts the ensemble shows some ability to discriminate between the different precipitation types and thus provides some positive value to forecast users. Algorithm diversity is shown to be as important as initial condition diversity in terms of forecast quality, although neither has as big an impact as model diversity. The algorithms have their individual strengths and weaknesses, but no algorithm is clearly better or worse than the others overall.

2018 ◽  
Vol 19 (10) ◽  
pp. 1689-1706 ◽  
Author(s):  
Thomas E. Adams III ◽  
Randel Dymond

Abstract This study presents findings from a real-time forecast experiment that compares legacy deterministic hydrologic stage forecasts to ensemble mean and median stage forecasts from the NOAA/NWS Meteorological Model-Based Ensemble Forecast System (MMEFS). The NOAA/NWS Ohio River Forecast Center (OHRFC) area of responsibility defines the experimental region. Real-time forecasts from subbasins at 54 forecast point locations, ranging in drainage area, geographic location within the Ohio River valley, and watershed response time serve as the basis for analyses. In the experiment, operational hydrologic forecasts, with a 24-h quantitative precipitation forecast (QPF) and forecast temperatures, are compared to MMEFS hydrologic ensemble mean and median forecasts, with model forcings from the NOAA/NWS National Centers for Environmental Prediction (NCEP) North American Ensemble Forecast System (NAEFS), over the period from 30 November 2010 through 24 May 2012. Experiments indicate that MMEFS ensemble mean and median forecasts exhibit lower errors beginning at about lead time 90 h when forecasts at all locations are aggregated. With fast response basins that peak at ≤24 h, ensemble mean and median forecasts exhibit lower errors much earlier, beginning at about lead time 36 h, which suggests the viability of using MMEFS ensemble forecasts as an alternative to OHRFC legacy forecasts. Analyses show that ensemble median forecasts generally exhibit smaller errors than ensemble mean forecasts for all stage ranges. Verification results suggest that OHRFC MMEFS NAEFS ensemble forecasts are reasonable, but needed improvements are identified.


2008 ◽  
Vol 136 (6) ◽  
pp. 2157-2172 ◽  
Author(s):  
Nusrat Yussouf ◽  
David J. Stensrud

Abstract A simple binning technique developed to produce reliable probabilistic quantitative precipitation forecasts (PQPFs) from a multimodel short-range ensemble forecasting system is evaluated during the cool season of 2005/06. The technique uses forecasts and observations of 3-h accumulated precipitation amounts from the past 12 days to adjust the present day’s 3-h quantitative precipitation forecasts from each ensemble member for each 3-h forecast period. Results indicate that the PQPFs obtained from this simple binning technique are significantly more reliable than the raw (original) ensemble forecast probabilities. Brier skill scores and areas under the relative operating characteristic curve also reveal that this technique yields skillful probabilistic forecasts of rainfall amounts during the cool season. This holds true for accumulation periods of up to 48 h. The results obtained from this wintertime experiment parallel those obtained during the summer of 2004. In an attempt to reduce the effects of a small sample size on two-dimensional probability maps, the simple binning technique is modified by implementing 5- and 9-point smoothing schemes on the adjusted precipitation forecasts. Results indicate that the smoothed ensemble probabilities remain an improvement over the raw (original) ensemble forecast probabilities, although the smoothed probabilities are not as reliable as the unsmoothed adjusted probabilities. The skill of the PQPFs also is increased as the ensemble is expanded from 16 to 22 members during the period of study. These results reveal that simple postprocessing techniques have the potential to provide greatly improved probabilistic guidance of rainfall events for all seasons of the year.


2007 ◽  
Vol 135 (4) ◽  
pp. 1424-1438 ◽  
Author(s):  
Andrew R. Lawrence ◽  
James A. Hansen

Abstract An ensemble-based data assimilation approach is used to transform old ensemble forecast perturbations with more recent observations for the purpose of inexpensively increasing ensemble size. The impact of the transformations are propagated forward in time over the ensemble’s forecast period without rerunning any models, and these transformed ensemble forecast perturbations can be combined with the most recent ensemble forecast to sensibly increase forecast ensemble sizes. Because the transform takes place in perturbation space, the transformed perturbations must be centered on the ensemble mean from the most recent forecasts. Thus, the benefit of the approach is in terms of improved ensemble statistics rather than improvements in the mean. Larger ensemble forecasts can be used for numerous purposes, including probabilistic forecasting, targeted observations, and to provide boundary conditions to limited-area models. This transformed lagged ensemble forecasting approach is explored and is shown to give positive results in the context of a simple chaotic model. By incorporating a suitable perturbation inflation factor, the technique was found to generate forecast ensembles whose skill were statistically comparable to those produced by adding nonlinear model integrations. Implications for ensemble forecasts generated by numerical weather prediction models are briefly discussed, including multimodel ensemble forecasting.


2019 ◽  
Vol 147 (8) ◽  
pp. 2997-3023 ◽  
Author(s):  
Craig S. Schwartz

Abstract Two sets of global, 132-h (5.5-day), 10-member ensemble forecasts were produced with the Model for Prediction Across Scales (MPAS) for 35 cases in April and May 2017. One MPAS ensemble had a quasi-uniform 15-km mesh while the other employed a variable-resolution mesh with 3-km cell spacing over the conterminous United States (CONUS) that smoothly relaxed to 15 km over the rest of the globe. Precipitation forecasts from both MPAS ensembles were objectively verified over the central and eastern CONUS to assess the potential benefits of configuring MPAS with a 3-km mesh refinement region for medium-range forecasts. In addition, forecasts from NCEP’s operational Global Ensemble Forecast System were evaluated and served as a baseline against which to compare the experimental MPAS ensembles. The 3-km MPAS ensemble most faithfully reproduced the observed diurnal cycle of precipitation throughout the 132-h forecasts and had superior precipitation skill and reliability over the first 48 h. However, after 48 h, the three ensembles had more similar spread, reliability, and skill, and differences between probabilistic precipitation forecasts derived from the 3- and 15-km MPAS ensembles were typically statistically insignificant. Nonetheless, despite fewer benefits of increased resolution for spatial placement after 48 h, 3-km ensemble members explicitly provided potentially valuable guidance regarding convective mode throughout the 132-h forecasts while the other ensembles did not. Collectively, these results suggest both strengths and limitations of medium-range high-resolution ensemble forecasts and reveal pathways for future investigations to improve understanding of high-resolution global ensembles with variable-resolution meshes.


2017 ◽  
Vol 32 (2) ◽  
pp. 479-491 ◽  
Author(s):  
Hong Guan ◽  
Yuejian Zhu

Abstract In 2006, the statistical postprocessing of the National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS) and North American Ensemble Forecast System (NAEFS) was implemented to enhance probabilistic guidance. Anomaly forecasting (ANF) is one of the NAEFS products, generated from bias-corrected ensemble forecasts and reanalysis climatology. The extreme forecast index (EFI), based on a raw ensemble forecast and model-based climatology, is another way to build an extreme weather forecast. In this work, the ANF and EFI algorithms are applied to extreme cold temperature and extreme precipitation forecasts during the winter of 2013/14. A highly correlated relationship between the ANF and EFI allows the determination of two sets of thresholds to identify extreme cold and extreme precipitation events for the two algorithms. An EFI of −0.78 (0.687) is approximately equivalent to a −2σ (0.95) ANF for the extreme cold event (extreme precipitation) forecast. The performances of the two algorithms in forecasting extreme cold events are verified against analysis for different model versions, reference climatology, and forecasts. The verification results during the winter of 2013/14 indicate that ANF forecasts more extreme cold events with a slightly higher skill than EFI. The bias-corrected forecast performs much better than the raw forecast. The current upgrade of the GEFS has a beneficial effect on the extreme cold weather forecast. Using the NCEP Climate Forecast System Reanalysis and Reforecast (CFSRR) as a climate reference gives a slightly better score than the 40-yr reanalysis. The verification methodology is also extended to an extreme precipitation case, showing a broad potential use in the future.


2015 ◽  
Vol 143 (8) ◽  
pp. 3044-3066 ◽  
Author(s):  
Nusrat Yussouf ◽  
David C. Dowell ◽  
Louis J. Wicker ◽  
Kent H. Knopfmeier ◽  
Dustan M. Wheatley

Abstract As part of NOAA’s Warn-on-Forecast (WoF) initiative, a multiscale ensemble-based assimilation and prediction system is developed using the WRF-ARW model and DART assimilation software. To evaluate the capabilities of the system, retrospective short-range probabilistic storm-scale (convection allowing) ensemble analyses and forecasts are produced for the 27 April 2011 Alabama severe weather outbreak. Results indicate that the storm-scale ensembles are able to analyze the observed storms with strong low-level rotation at approximately the correct locations and to retain the supercell structures during the 0–1-h forecasts with reasonable accuracy. The system predicts the low-level mesocyclones of significant isolated tornadic supercells that align well with the locations of radar-derived rotation. For cases with multiple interacting storms in close proximity, the system tends to produce more variability in mesocyclone forecasts from one initialization time to the next until the observations show the dominance of one of the cells. The short-range ensemble probabilistic forecasts obtained from this continuous 5-min storm-scale 6-h-long update system demonstrate the potential of a frequently updated, high-resolution NWP system that could be used to extend severe weather warning lead times. This study also demonstrates the challenges associated with developing a WoF-type system. The results motivate future work to reduce model errors associated with storm motion and spurious cells, and to design storm-scale ensembles that better represent typical 1-h forecast errors.


2011 ◽  
Vol 139 (9) ◽  
pp. 3069-3074 ◽  
Author(s):  
Andreas P. Weigel ◽  
Simon J. Mason

This article refers to the study of Mason and Weigel, where the generalized discrimination score D has been introduced. This score quantifies whether a set of observed outcomes can be correctly discriminated by the corresponding forecasts (i.e., it is a measure of the skill attribute of discrimination). Because of its generic definition, D can be adapted to essentially all relevant verification contexts, ranging from simple yes–no forecasts of binary outcomes to probabilistic forecasts of continuous variables. For most of these cases, Mason and Weigel have derived expressions for D, many of which have turned out to be equivalent to scores that are already known under different names. However, no guidance was provided on how to calculate D for ensemble forecasts. This gap is aggravated by the fact that there are currently very few measures of forecast quality that could be directly applied to ensemble forecasts without requiring that probabilities be derived from the ensemble members prior to verification. This study seeks to close this gap. A definition is proposed of how ensemble forecasts can be ranked; the ranks of the ensemble forecasts can then be used as a basis for attempting to discriminate between corresponding observations. Given this definition, formulations of D are derived that are directly applicable to ensemble forecasts.


2007 ◽  
Vol 22 (3) ◽  
pp. 580-595 ◽  
Author(s):  
Chungu Lu ◽  
Huiling Yuan ◽  
Barry E. Schwartz ◽  
Stanley G. Benjamin

Abstract A time-lagged ensemble forecast system is developed using a set of hourly initialized Rapid Update Cycle model deterministic forecasts. Both the ensemble-mean and probabilistic forecasts from this time-lagged ensemble system present a promising improvement in the very short-range weather forecasting of 1–3 h, which may be useful for aviation weather prediction and nowcasting applications. Two approaches have been studied to combine deterministic forecasts with different initialization cycles as the ensemble members. The first method uses a set of equally weighted time-lagged forecasts and produces a forecast by taking the ensemble mean. The second method adopts a multilinear regression approach to select a set of weights for different time-lagged forecasts. It is shown that although both methods improve short-range forecasts, the unequally weighted method provides the best results for all forecast variables at all levels. The time-lagged ensembles also provide a sample of statistics, which can be used to construct probabilistic forecasts.


2018 ◽  
Vol 146 (8) ◽  
pp. 2361-2379 ◽  
Author(s):  
Montgomery L. Flora ◽  
Corey K. Potvin ◽  
Louis J. Wicker

Abstract As convection-allowing ensembles are routinely used to forecast the evolution of severe thunderstorms, developing an understanding of storm-scale predictability is critical. Using a full-physics numerical weather prediction (NWP) framework, the sensitivity of ensemble forecasts of supercells to initial condition (IC) uncertainty is investigated using a perfect model assumption. Three cases are used from the real-time NSSL Experimental Warn-on-Forecast System for Ensembles (NEWS-e) from the 2016 NOAA Hazardous Weather Testbed Spring Forecasting Experiment. The forecast sensitivity to IC uncertainty is assessed by repeating the simulations with the initial ensemble perturbations reduced to 50% and 25% of their original magnitudes. The object-oriented analysis focuses on significant supercell features, including the mid- and low-level mesocyclone, and rainfall. For a comprehensive analysis, supercell location and amplitude predictability of the aforementioned features are evaluated separately. For all examined features and cases, forecast spread is greatly reduced by halving the IC spread. By reducing the IC spread from 50% to 25% of the original magnitude, forecast spread is still substantially reduced in two of the three cases. The practical predictability limit (PPL), or the lead time beyond which the forecast spread exceeds some prechosen threshold, is case and feature dependent. Comparing to past studies reveals that practical predictability of supercells is substantially improved by initializing once storms are well established in the ensemble analysis.


Sign in / Sign up

Export Citation Format

Share Document