scholarly journals Quantum genetic sliding mode controller design for depth control of an underwater vehicle

2018 ◽  
Vol 51 (7-8) ◽  
pp. 336-348 ◽  
Author(s):  
Zahra Tavanaei-Sereshki ◽  
Mohammad Reza Ramezani-al

Quantum genetic algorithm (QGA) is an optimization algorithm based on the probability that combines the idea of quantum computing and traditional genetic algorithm. In this paper, a new type of control law is developed for an underwater vehicle along with the desired path. The proposed controller is based on sliding mode control (SMC) in which the reaching law is modified to overcome two challenging problems, chattering, and sensitivity against noise. The disturbance is considered as a set of sinus waves with different frequencies which its parameters are estimated by Particle Swarm Optimization (PSO). Since QGA has some advantages such as fast convergence speed, small population size, and strong global search capabilities, we use QGA to determine the gain of the proposed controller. Finally, the Lyapunov theorem is used to prove that trajectory-tracking error converges to zero. Simulation results show that QGA can converge to the optimal response with a population consist of one chromosome.

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Jeang-Lin Chang

For a class of linear MIMO uncertain systems, a dynamic sliding mode control algorithm that avoids the chattering problem is proposed in this paper. Without using any differentiator, we develop a modified asymptotically stable second-order sliding mode control law in which the proposed controller can guarantee the finite time convergence to the sliding mode and can show that the system states asymptotically approach to zero. Finally, a numerical example is explained for demonstrating the applicability of the proposed scheme.


2002 ◽  
Vol 8 (2) ◽  
pp. 189-217 ◽  
Author(s):  
Feijun Song ◽  
Edgar An ◽  
Samuel M. Smith

Successful controller development involves three distinct stages, namely, control law design, code debugging and field test. For Autonomous Underwater Vehicle (AUV) applications, the first two stages require special strategies. Since the dynamics of an AUV is highly nonlinear, and the environment that an AUV operates in is noisy with external disturbance that cannot be neglected, a robust control law must be considered in the first stage. The control law design is even more difficult when optimal criteria are also involved. In the second stage, since the software architecture on an AUV is very complicated, debugging the controllers alone without all the software routines running together often can not reveal subtle faults in the controller code. Thorough debugging needs at-sea test, which is costly. Therefore, a platform that can help designers debug and evaluate controller performance before any at-sea experiment is highly desirable. Recently, a 6 Degree of Freedom (DOF) AUV simulation toolbox was developed for the Ocean Explorer (OEX) series AUVs developed at Florida Atlantic University. The simulation toolbox is an ideal platform for controller in-lab debugging and evaluation. This paper first presents a novel robust controller design methodology, named the Sliding Mode Fuzzy Controller (SMFC). It combines sliding mode control and fuzzy logic control to create a robust, easy on-line tunable controller structure. A formal proof of the robustness of the proposed nonlinear sliding mode control is also given. A pitch and a heading controller have been designed with the presented structure and the controller code was tested on the simulation software package as well as at sea. The simulated and at-sea test data are compared. The whole controller design procedure described in this paper clearly demonstrates the advantage of using the simulation toolbox to debug and test the controller in-lab. Moreover, the pitch and heading controller have been used in the real system for more than 2 years, and have also been successfully ported to other types of vehicles without any major modification on the controller parameters. The similarity of the controller performances on different vehicles further demonstrates the robustness of the proposed Sliding Mode Fuzzy Controller. The main contribution of this paper is to provide useful insights into the design and implementation of the proposed control architecture, and its application in AUV control.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ruiguo Liu ◽  
Xuehui Gao

A new neural network sliding mode control (NNSMC) is proposed for backlash-like hysteresis nonlinear system in this paper. Firstly, only one neural network is designed to estimate the unknown system states and hysteresis section instead of multiscale neural network at former researches since that can save computation and simplify the controller design. Secondly, a new NNSMC is proposed for the hysteresis nonlinearity where it does not need tracking error transformation. Finally, the Lyapunov functions are adopted to guarantee the stabilities of the identification and control strategies semiglobally uniformly ultimately bounded (UUB). Two cases simulations are proved the effectiveness of the presented identification approach and the performance of the NNSMC.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-23 ◽  
Author(s):  
Guoqiang Zhu ◽  
Sen Wang ◽  
Lingfang Sun ◽  
Weichun Ge ◽  
Xiuyu Zhang

In this paper, a fuzzy adaptive output feedback dynamic surface sliding-mode control scheme is presented for a class of quadrotor unmanned aerial vehicles (UAVs). The framework of the controller design process is divided into two stages: the attitude control process and the position control process. The main features of this work are (1) a nonlinear observer is employed to predict the motion velocities of the quadrotor UAV; therefore, only the position signals are needed for the position tracking controller design; (2) by using the minimum learning technology, there is only one parameter which needs to be updated online at each design step and the computational burden can be greatly reduced; (3) a performance function is introduced to transform the tracking error into a new variable which can make the tracking error of the system satisfy the prescribed performance indicators; (4) the sliding-mode surface is introduced in the process of the controller design, and the robustness of the system is improved. Stability analysis proved that all signals of the closed-loop system are uniformly ultimately bounded. The results of the hardware-in-the-loop simulation validate the effectiveness of the proposed control scheme.


Author(s):  
Ricardo Aguilar-López ◽  
Rafael Martínez-Guerra ◽  
Rafael Maya-Yescas

The main issue of this paper is the synthesis of a robust control law for regulation purposes, which is applied to a class of chemical reactor which exhibits highly nonlinear and oscillatory behavior. The considered methodology employs the typical structure of Proportional-Integral controllers, where the corresponding integral term is now proposed as an integral high order sliding-mode compensator, which deals with the intrinsic nonlinearities of the system to be regulated. A theoretical frame is provided to demonstrate that the proposed controller produces semi-global practical stability; performance of the proposed methodology is assessed via comparison with other controllers.


2014 ◽  
Vol 3 (2) ◽  
pp. 99 ◽  
Author(s):  
Maryam Jafari ◽  
Aref Shahmansoorian

This paper describes the design of robust control of PI/Backstepping for the snake robot to control the joints motion. First, the stability of the method is proved and, by applying this controller to the robot, its motion pattern is controlled in a way that it can move and follow by mimicking the motion of real snakes on the predefined trajectories. Then, the control parameters are optimized using the Genetic Algorithm (GA). Comparing obtained results with sliding mode revealed that, the former has significantly reduced the tracking error and control energy; in addition there is no chattering phenomenon. Keywords: Snake Robot, PI/Backstepping Control, Genetic Algorithm, Control Energy.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Yujie Shen ◽  
Long Chen ◽  
Yanling Liu ◽  
Xiaoliang Zhang

An ideal inerter has been applied to various vibration engineering fields because of its superior vibration isolation performance. This paper proposes a new type of fluid inerter and analyzes the nonlinearities including friction and nonlinear damping force caused by the viscosity of fluid. The nonlinear model of fluid inerter is demonstrated by the experiments analysis. Furthermore, the full-car dynamic model involving the nonlinear fluid inerter is established. It has been detected that the performance of the vehicle suspension may be influenced by the nonlinearities of inerter. So, parameters of the suspension system including the spring stiffness and the damping coefficient are optimized by means of QGA (quantum genetic algorithm), which combines the genetic algorithm and quantum computing. Results indicate that, compared with the original nonlinear suspension system, the RMS (root-mean-square) of vertical body acceleration of optimized suspension has decreased by 9.0%, the RMS of pitch angular acceleration has decreased by 19.9%, and the RMS of roll angular acceleration has decreased by 9.6%.


Sign in / Sign up

Export Citation Format

Share Document