The Research of PID and Bang-Bang Controllers Based on the dSPACE

2013 ◽  
Vol 416-417 ◽  
pp. 486-491
Author(s):  
Yi Jiang ◽  
Jien Ma

This paper analyzes the PID and the Bang-Bang control methods. To compare the performance of these traditional algorithms, the speed control of a brushless DC drive system is implemented in real-time, using these two methods. The parameters in the controller can be adjusted by the hardware and the software to achieve the optimum performance of the closed-loop system. The experiment results proved that these two controllers have their own merit and defect according to the different steady-state performance and dynamic response respectively. It is concluded that the PID and the Bang-Bang controllers could be used in different applications.

2019 ◽  
Vol 8 (2S11) ◽  
pp. 4031-4034

Fly back converter is the most popular converter because of its simplicity, low part counts and isolation. It occupies less volume and it saves cost. Fly back converter steps up and step down the voltage with the same polarity. Open loop operation remains insensitive to the input voltage and load variations. Matlab Simulink model for Fly back converter is established using PI controller. Open loop Fly back converter system and closed loop fly back converter systems are simulated and their outcomes are compared. Comparison is done in terms of Rise time ,Settling time and steady state error


2019 ◽  
Vol 53 (1-2) ◽  
pp. 141-150 ◽  
Author(s):  
Menghua Zhang ◽  
Yongfeng Zhang ◽  
Bing Ji ◽  
Changhui Ma ◽  
Xingong Cheng

As typical underactuated systems, tower crane systems present complicated nonlinear dynamics. For simplicity, the payload swing is traditionally modeled as a single-pendulum in existing works. Actually, when the hook mass is close to the payload mass, or the size of the payload is large, a tower crane may exhibit double-pendulum effects. In addition, existing control methods assume that the hook and the payload only swing in a plane. To tackle the aforementioned practical problems, we establish the dynamical model of the tower cranes with double-pendulum and spherical-pendulum effects. Then, on this basis, an energy-based controller is designed and analyzed using the established dynamic model. To further obtain rapid hook and payload swing suppression and elimination, the swing part is introduced to the energy-based controller. Lyapunov techniques and LaSalle’s invariance theorem are provided to demonstrate the asymptotic stability of the closed-loop system and the convergence of the system states. Simulation results are illustrated to verify the correctness and effectiveness of the designed controller.


2012 ◽  
Vol 590 ◽  
pp. 195-200
Author(s):  
Meng Jen Chen ◽  
Yu Chi Wu ◽  
Wen Shiush Chen ◽  
Pei Wei Huang ◽  
Tsung Wei Tsai

In this paper, a framework for integrating a real-time digital simulator and EMS-OPF program is proposed and addressed, through two different communication architectures: asynchronous and synchronous. Validation of these communication architectures is carried out by Ethernet UDP/IP (asynchronous) and analog channels of IO card (synchronous). With this framework, both dynamic and steady-state performance of a power system can be studied easily in real-time mode.


2012 ◽  
Vol 63 (6) ◽  
pp. 365-372
Author(s):  
Chinnadurai Nagarajan ◽  
Muthusamy Madheswaran

This paper presents a closed loop CLL-T (capacitor inductor inductor) series parallel resonant converter (SPRC) has been simulated and the performance is analyzed. A three element CLL-T SPRC working under load independent operation (voltage type and current type load) is presented in this paper. The stability and AC analysis of CLL-T SPRC has been developed using state space technique and the regulation of output voltage is done by using Fuzzy controller. The simulation study indicates the superiority of fuzzy control over the conventional control methods. The proposed approach is expected to provide better voltage regulation for dynamic load conditions. A prototype 300 W, 100 kHz converter is designed and built to experimentally demonstrate, dynamic and steady state performance for the CLL-T SPRC are compared from the simulation studies.


2017 ◽  
Vol 19 (9) ◽  
pp. 952-962 ◽  
Author(s):  
Saeed Shayestehmanesh ◽  
James C Peyton Jones ◽  
Jesse Frey

Most knock controllers respond to knock events which are defined according to some threshold knock intensity. Multi-threshold knock events offer more informative feedback since they encode not just the occurrence of knock events but also some measure of their intensity. While this has the potential for improved control, it is hard to assess the extent to which any benefits are truly realized because (in common with all knock control systems) the results of any single experiment or simulation depends on the random arrival of knock events in that instance. In this article, methods are developed instead to compute the statistical properties of the closed-loop response of a general multi-threshold knock controller, thereby providing a much more complete and rigorous characterization of its performance than has previously been possible. The method is applied to single- and dual-threshold knock controllers and used to provide a rigorous comparison of the transient and steady-state performance of these different control laws. The method can also be used as a calibration aid to assess the effects of different controller gains in reliable, repeatable fashion.


1999 ◽  
Vol 121 (3) ◽  
pp. 346-350
Author(s):  
Jie Huang

This paper aims to improve the transient response of a linear regulator system by optimizing the feedback gains associated with a fixed set of desirable eigenvalues of the closed-loop system. The optimal feedback gain is such that the Frobenius norm of the steady state of the compensator is minimized. Computer simulation shows that this scheme is effective in improving the transient response of the regulator system.


The vehicle handling is defined as the responsiveness of a vehicle to the driver input. The driver and vehicle is a closed loop system where the driver observes the direction or position of the vehicle in order to correct his input to achieve the desired motion. It is required for the driver to safely ride the vehicle particularly during cornering, acceleration and braking in order to avoid skidding. The skid occurring in a vehicle is a condition in automobile handling where one or more tyres slip relative to the road and the overall vehicle handling gets affected. Tire slip and related slip angle describe the performance of an individual tire. The cornering behaviour of a vehicle is one of the important modes in handling. In this project, a mathematical model is build using MATLAB-SIMULINK for a passenger car undergoing cornering. The steer angles for various speeds and radius of turns are determined and the results are displayed in the form of graphs. An app is designed using the MATLAB app designer which predicts the type of skid- under steer, over steer or neutral steer while the vehicle is undergoing cornering. This system is then simulated in the real time environment with the help of IPG Carmaker and driving scenario designer app in MATLAB and the corresponding results are noted


Sign in / Sign up

Export Citation Format

Share Document