Measurement of Flux in a Ceramic Permanent Magnet of Complex Shape

1977 ◽  
Vol 14 (2) ◽  
pp. 141-144
Author(s):  
A. Basak

The flux measurement in a permanent magnet by producing a relative movement between it and a search coil is restricted to its simple shape. The almost-linear normal demagnetization characteristics of most ceramic magnet materials enable employment of a novel method to determine the flux distribution in complex shaped magnets.

Machines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 139
Author(s):  
Matthias Vollat ◽  
Dominik Krahe ◽  
Frank Gauterin

To reduce torque oscillations in electric motors, harmonic current injection (HCI) has been used in industry for some time. For this purpose, higher harmonic currents calculated in advance are injected into the machine. Since the general conditions for the machine can change during its life cycle, this article presents a method that makes it possible to change the parameters of HCI during operation. For this purpose, sensor signals are used to detect the reaction of the electric motor to small variations of the HCI parameters. The knowledge gained in this way is used to make further suitable variations. FEM simulations were used to verify the effectiveness of the approach. The results show that the algorithm can independently optimize the HCI parameters during runtime and reduces the amplitude of the 6th harmonic in the torque by 87% for a permanent magnet synchronous machine.


2012 ◽  
Vol 721 ◽  
pp. 237-242 ◽  
Author(s):  
Masaru Oka ◽  
Takashi Todaka ◽  
Masato Enokizono ◽  
Kousuke Nagaya ◽  
Tomoyuki Fujita

Magnetic gears are a force transmitter consisting of permanent magnets. The mechanical input can be transmitted to an output shaft without contact by magnetic forces. The magnetic gears are not worn out because there is no friction. As a result, the running costs such as the maintenance fee can be suppressed and the resources can be saved. However, the transmission torques of the conventional magnetic gears, which have so far been developed, are very low. Besides, new structure models designed for high torque density need a lot of permanent magnets and multi-pole constructions. Those structures are complex and the manufacturing is difficult. In this research, we applied a flux concentration type surface permanent magnet arrangement to a surface permanent magnet type magnetic gear in order to improve the transmission torque and to reduce the amount of permanent magnets. The magnetic flux distribution, the gap flux density and the transmission torque of the developed new models are numerically analyzed by using the two-dimensional finite element method. In this paper, a permanent magnet structure optimized to reduce its amount and influence of the flux concentration type surface permanent magnet arrangement on the gap flux density distribution and transmission torque are reported.


2013 ◽  
Vol 60 (11) ◽  
pp. 4852-4860 ◽  
Author(s):  
Hanne K. Jussila ◽  
Andrey V. Mityakov ◽  
Sergey Z. Sapozhnikov ◽  
Vladimir Y. Mityakov ◽  
Juha Pyrhonen

Sign in / Sign up

Export Citation Format

Share Document