Effect of the ethylene-acrylic acid melt index on the structural characteristics and properties of high-density polyethylene/layered double hydroxide nanocomposites prepared via the master-batch method

2012 ◽  
Vol 48 (2) ◽  
pp. 245-256 ◽  
Author(s):  
Yaozhu Tian ◽  
Huan Zhang ◽  
Jun Qin ◽  
Jie Yu ◽  
Liping Cheng ◽  
...  
2012 ◽  
Author(s):  
Wan Aizan Wan Abdul Rahman ◽  
Chan Hoong Chen ◽  
Ahmad Fareed

Uji kaji ini dijalankan untuk mengkaji sifat fizikal dan terma bagi formulasi campuran polietilina berangkai silang gred acuan putaran berasaskan kebolehprosesan. High Density Polyethylene (HDPE) gred acuan putaran dicampur dengan pelbagai komposisi HDPE dan Low Density Polyethylene (LDPE) menggunakan penyemperit skru pendua. Indeks Aliran Lebur (MI) campuran dikaji berasaskan ASTM D 1238. Komposisi campuran tersebut disambung silang secara kimia dengan agen penyambung silang silane menggunakan 'two roll mill’. Kemudian sambung silang lembapan dilakukan di dalam water bath selama 4 jam dan 8 jam. Kandungan gel diukur mengikut ASTM D 2765 bagi menentukan darjah penyambungan silang. Bagi analisis terma,hanya sampel yang disambung silang dengan 2.0 phr agen penyambung silang silane dikaji dengan Kalorimetri Pengimbasan Pembeza (DSC) berdasarkan ASTM 3417. Ujian kestabilan terma bagi XLPE silane dilakukan dengan menggunakan Penganalisa Termogravimetri (TGA) mengikut ASTM D 3850. Keputusan bagi Indeks Aliran Lebur (MI) menunjukkan campuran antara HDPE gred acuan putaran dengan HDPE lebih tinggi berbanding LDPE, dengan itu menambahbaik kebolehprosesan bahan. Ketumpatan campuran antara HDPE gred acuan putaran HDPE meningkat sedikit manakala campuran dengan LDPE menurun sedikit. Sampel yang dicampur dengan HDPE tidak menunjukkan perubahan bagi suhu lebur, Tm manakala darjah penghabluran, Xc, mengalami penurunan. Sampel campuran dengan LDPE pula, Tm dan Xc menurun dengan bertambahnya komposisi LDPE menunjuk kepada kebolehprosesan yang lebih baik. Kandungan gel meningkat dengan penambahan kepekatan silane dan tidak bergantung kepada komposisi campuran. Masa pengawetan yang lebih panjang menghasilkan nilai gel yang tinggi. Kestabilan terma PE yang dirangkai silang lebih tinggi berbanding HDPE yang tidak dirangkai silang. Oleh yang demikian, penyambungan silang secara silane menambahkan kestabilan campuran. Kata kunci: HDPE rangkai silang silane, acuan putaran, sifat fizikal, sifat terma dan kebolehprosesan This study is aimed at investigating the physical and thermal properties of the modified rotational molding grade cross-linked polyethylene compound with respect to process ability. Rotational molding grade High Density Polyethylene (HDPE) was blended at various compositions with HDPE and Low Density Polyethylene (LDPE) using twin screw extruder. The melt index of the blends was studied according to ASTM D 1238. The blended compositions were chemically cross-linked with various amount of silane cross-linking agent using two roll-mill. Water curing was then undertaken at 100C in water bath for 4 and 8 hours. Gel content was measured according to ASTM D 2765 to determine the degree of cross-linking. For thermal analysis, only samples crosslinked with 2.0 phr silane cross-linking agent were investigated on the Differential Scanning Calorimetry (DSC) according to ASTM D 3417. The thermal stability test of the silane Crosslinkable Polyethylene (XLPE) was performed by Thermogravimetric Analyzer (TGA) according to ASTM D 3850. Results on melt index (MI) indicated that the rotational molding grade HDPE blended with HDPE showed higher MI compared to that with LDPE thus improved process ability. The density of rotational molding grade HDPE with HDPE was slightly increased whereas that blended with LDPE was slightly decreased. Samples blended with HDPE, melting temperature, Tm, barely changed and degree of crystallinity, Xc, decreased with compositions. Samples with LDPE Tm and Xc decreased with compositions thus improved process ability. As the silane concentrations increased, the gel content after curing was also increased but independent of compositions. Longer curing time resulted in higher gel content. Thermal stability of the crosslinked HDPE was higher than the uncross-linked HDPE, thus silane cross-linking help to stabilize the blends. Key words: Silane cross–linked high density polyethylene, rotational molding, thermal properties, physical properties and process ability


2012 ◽  
Vol 567 ◽  
pp. 127-130
Author(s):  
Jian Ye Song ◽  
Ming Zhe Leng ◽  
Xing Qi Fu ◽  
Jian Qiang Liu

Single-phase ZnAl2O4 spinel has been prepared by a novel simple route using layered double hydroxide as a precursor. ZnAl2O4 spinel is directly obtained by calcination of zinc aluminum layered double hydroxide (Zn/Al molar radio is 0.5) without further chemical treatment. The key feature of this method is that it affords uniform distribution of all metal cations on an atomic level in the precursor. The structural characteristics of the as-synthesized precursor and the resulted calcined products are obtained by X-ray diffraction and scanning electron microscope.


RSC Advances ◽  
2012 ◽  
Vol 2 (9) ◽  
pp. 3927 ◽  
Author(s):  
De-Yi Wang ◽  
Amit Das ◽  
Andreas Leuteritz ◽  
R.N. Mahaling ◽  
Dieter Jehnichen ◽  
...  

2020 ◽  
Vol 8 ◽  
Author(s):  
Andra Tǎmaş ◽  
Ioana Cozma ◽  
Laura Cocheci ◽  
Lavinia Lupa ◽  
Gerlinde Rusu

The dye industry is one of the largest water consuming industries, and at the same time generates large quantities of wastewaters. The resulting wastewaters require proper treatment before discharge, because the dye contents have a negative effect on the water body and organisms present in it. The most efficient treatment method for water containing dyes is represented by adsorption processes. The challenge with these adsorption processes is to develop new, efficient, viable, and economic adsorbent materials. Therefore, in the present paper, the performance of Zn2Al-layered double hydroxide, prepared from an industrial waste (zinc ash) as a zinc source, was investigated in the Orange II dye adsorption process. The Zn2Al-layered double hydroxide prepared from secondary sources presents similar morphological and structural characteristics as those prepared from analytical grade reagents. The influence of initial dye concentration, adsorption time, solid:liquid ratio, pH, and temperature was evaluated in order to confirm the benefit of this waste valorization. A comparison with the reference Zn2Al-layered double hydroxide prepared from analytical grade reagents was performed and the results show that due to the small presence of impurities, the material prepared from zinc ash shows better adsorption capacities (qmax,exp = 42.5 mg/g at 293 K) than the material prepared from reagents (qmax,exp = 36.9 mg/g at 293 K), justifying the utilization of secondary sources for layered double hydroxides preparation. The proposed treatment process presents advantages from both economic and environmental protection point of view.


2012 ◽  
Vol 450-451 ◽  
pp. 715-718 ◽  
Author(s):  
Jun Qin ◽  
Huan Zhang ◽  
Li Ping Chen ◽  
Jie Yu

The High-density polyethylene (HDPE) / the ethylene acrylic acid (EAA) - layered double hydroxide (LDH) nanocomposites were prepared by melt blending with EAA)/ LDH master batch; and the structure and properties of this nanocomposite were studied. The results showed that the EAA acted as an effective compatibilizer for the nanocomposites can enhance the interfacial adhesion between LDH and HDPE obviously, promote the dispersion of LDH in the matrix, increase both the tensile strength and toughness of nanocomposites, and improve the thermal stability and delay the onset decomposition temperature of nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document