Investigation of nano-hybridization effects on low velocity impact behaviors of basalt fiber reinforced composites

2020 ◽  
pp. 002199832094964
Author(s):  
İbrahim Demirci ◽  
Ahmet Avcı ◽  
Mehmet Turan Demirci

In general the nanoparticles increase the mechanical and impact behaviors of fiber reinforced polymer based composites. However, the effects of the hybridization of nanoparticles and their reasons over the nano scale fracture mechanisms have not been adequately studied for fiber reinforced composites. In this study, the low velocity impact responses and the mechanical behaviors were investigated for 4%wt. SiO2 nanoparticles filled BFR/Epoxy nanocomposites, 0.5%wt. MWCNTs filled BFR/Epoxy nanocomposites, 4%wt. SiO2 nanoparticles and 0.5%wt. MWCNTs nano-hybrid filled BFR/Epoxy nanocomposites and unfilled BFR/Epoxy composites. The tensile and low velocity impact tests at 10 J and 20 J of energy levels were applied to nanoparticles, nano-hybrid and unfilled BFR/Epoxy composites in order to define the effects of nanoparticles and nano-hybrid particles on the impact and mechanical features according to in accordance with ASTM D3039/D3039M-14 and ASTM D7136/7136M standards. It was observed that SiO2 nanoparticles addition to BFR/Epoxy for both 10 J and 20 J showed the highest tensile strength, maximum force, rebound energy and the lowest displacements and absorbed energy. SiO2+MWCNTs nano-hybrid addition to BFR/Epoxy improved higher low velocity impact responses and tensile strength than MWCNTs addition. The specimens of unfilled BFR/Epoxy composites showed the lowest tensile strength and maximum force and the highest maximum force, displacements and absorbed energy. Microscope and SEM analyses demonstrated that minimum failures like fiber breakages, delamination and debonding were observed by filling SiO2 nanoparticles provided the nano scale fracture mechanisms. In addition MWCNTs hybridization with SiO2 nanoparticles minimizes negative effects of MWCNTs micro size length and improved the impact and mechanical behaviors.

2020 ◽  
Vol 54 (23) ◽  
pp. 3415-3433 ◽  
Author(s):  
Mehmet Turan Demirci

Nano-microscale fracture mechanisms, which affect fracture toughness, play an important role in improving the impact characterization of fiber reinforced polymer composites. Therefore, crack behaviors are tried to be controlled with fracture mechanisms by filling nanoparticles into polymer matrix for improving impact characteristics and fracture toughness in latest studies. In this study, it was aimed to investigate the effects of SiO2 nanoparticles addition into epoxy matrix on the low velocity impact characteristics and fracture toughness in basalt fiber reinforced filament wound composite tubes. SiO2 nanoparticle of 4% wt. filled and unfilled ± [55]6 filament wound basalt fiber reinforced/epoxy composite tubes were subjected to low velocity impact tests at 5 J, 10 J, and 15 J of energy levels. It was seen that while the addition of nanoparticles were increasing the maximum impact forces in the range of about 19%–32%, displacements and absorbed energies decreased because of the increase in the bending stiffness. Charpy impact tests were performed to three different notched arc shaped specimens for determining the impact fracture toughness. SiO2 nanoparticles increased the fracture toughness by 20%–23%. It was observed that SiO2 nanoparticles delayed the formation of failures such as debonding and delamination, and reduced the fiber breakage branching in low velocity impact tests. A liquid penetrant test was used to inspect the crack formations and progressions on the impacted surfaces of all composite tubes as practical inspection for industrial applications. It was seen that microscope and SEM analysis supported the liquid penetrant inspection, which is a non-destructive testing method.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3059 ◽  
Author(s):  
Sebastian Sławski ◽  
Małgorzata Szymiczek ◽  
Jarosław Kaczmarczyk ◽  
Jarosław Domin ◽  
Eugeniusz Świtoński

This paper presents the results of research concerning multilayered epoxy composites reinforced with different materials. The strength of multilayered composites depends, to a large extent, on the reinforcing material. The authors decided to compare the low velocity impact response and perform tensile strength tests on several composites, to ascertain the mechanical properties of the prepared composites. Five different reinforcing materials were provided for the research (two fabrics made from aramid fibers, two fabrics made from carbon fibers and one fabric made from polyethylene fibers). The composites were manufactured by the vacuum supported hand laminating method. The low velocity impact response tests were conducted with the use of a pneumatic launcher. Three strikers with different geometry (conical striker, hemispherical striker and ogival striker) were used. A comparison of the resulting damage to the composites after the impact of the strikers was based on the images obtained using an optical microscope; tensile tests were also performed. The experimental investigation showed significant differences in the mechanical properties of the composites, depending on the applied reinforcing material. It was found that, as a result of the impacts, less damage occurred in the composites which were characterized by a lower Young’s modulus and a higher tensile strength.


2010 ◽  
Vol 118-120 ◽  
pp. 226-230
Author(s):  
Xiang Zheng ◽  
Xiao Yan Tong ◽  
Hao Chen ◽  
Lei Jiang Yao

An experimental study of low-velocity impact characteristics and strength after impact was carried out on both woven fiber-reinforced resin matrix composites and woven fiber-reinforced ceramic matrix composites. The test specimens were impacted using a dropped-weight impact test apparatus with an instrumented spherical tip. Ultrasonic C-scan was used in nondestructive testing to characterize and quantify the impact damage. Much more damage of ceramic matrix composites than that of resin matrix composites occur and process in loading stage. The peak load of resin matrix composites is higher than that of ceramic matrix composites. According to the results of observing optical photographs and C-scan images, the damage area of ceramic matrix composites is greater than that of resin matrix composites and the difference increases as the energy increases. Damage resistance of ceramic matrix composites is lower than that of resin matrix composites, but damage tolerance of ceramic matrix composites is higher than that of resin matrix composites.


2018 ◽  
Vol 53 (5) ◽  
pp. 693-705 ◽  
Author(s):  
Mehdi Ranjbar ◽  
Saeed Feli

The effect of different weight percentages (wt.%) of MWCNTs includes 0, 0.17, 0.34 and 0.51% on the mechanical and low-velocity impact properties are presented on the example of the pure epoxy and epoxy/fiberglass composites beams. A sonication technique is used to disperse MWCNTs in the epoxy network and the nanocomposite beams are fabricated using hand lay-up technique. In tensile tests, the value of Young’s modulus, tensile strength and strain at break are reported. In the low-velocity impact tests on the MWCNTs/fiberglass/epoxy, the time-history response of contact force, displacement and velocity of the impactor and indentation and displacement of the beam are measured and presented. The results show that compared to pure epoxy, Young’s modulus and tensile strength of epoxy/MWCNTs are increased 21.98% and 58.32% at 0.34 wt.% of CNTs, respectively, and raised 1.05 and 1.17 times at 0.17 wt.% of CNTs for the epoxy/fiberglass/MWCNTs, respectively. It is observed that the excellent improvement in the impact properties is achieved for 0.34 wt.% of CNTs. A series of polynomial formulations as a function of wt.% of CNTs are proposed to calculate the Young’s modulus, peak contact force and maximum beam deflection at the impact position.


Author(s):  
Md. Ekramul Islam ◽  
Tanjheel H. Mahdi ◽  
Mahesh V. Hosur ◽  
Alfred Tcherbi-Narteh ◽  
Shaik Jeelani

The use of carbon fiber reinforced polymeric composites (FRPC) for naval vessels has been increasingly recently, where high impact resistance is a major concern. Recent advancement in the use of nanoparticles has enabled the design of lighter, stronger and more durable FRPC structures compared to the traditional FRPC. In this study, carbon fiber reinforced epoxy composites were modified with binary (2 wt.% montmorillonite nanoclay and 0.1 wt. % MWCNT together) nanoparticles and subjected to marine environmental conditioning. Low velocity impact response of the modified samples were tested after 6 months of conditioning and compared with control carbon/epoxy composites. The composite laminates were subjected to impact loading at 30J and 40J energy levels. Load vs displacement characteristics were obtained and analyzed. The damage area for all control and modified samples were observed using thermography imaging technique and quantified. From experimental results, it was evident that durability of carbon fiber reinforced epoxy composites was significantly improved by modification with montmorillonite nanoclay along with slight amount of MWCNTs.


2021 ◽  
pp. 002199832110238
Author(s):  
Gyanesh Patnaik ◽  
Anshul Kaushik ◽  
Abhishek Rajput ◽  
Guru Prakash ◽  
R Velmurugan

The perforation characteristics of fiber reinforced laminates is crucial for the design of protective civil and military structures. This paper investigates the perforation characteristics (ballistic limit velocity, residual velocity, perforation energy) of cross ply and quasi-isotropic (QI) carbon fiber reinforced polymer (CFRP) laminates under the impact of a rigid conical steel bullet. The influence of thickness and ply orientation on these characteristics is also studied for a wide range of velocities. The perforation characteristics of these laminates were determined, numerically as well as experimentally. A numerical model is developed by using Hashin damage model to understand the behavior of laminates under high velocity impact. The accuracy of the model is assessed by comparing its prediction with experimental results of cross ply laminates. Then, impact perforation study of different possible configurations made of quasi-isotropic (QI) CFRP laminates, oriented at 0°, 90°, 45° and −45° directions are carried out with the help of validated numerical model. The perforation characteristics predicted with the help of numerical model is in good agreement with the experimental results. Optimal configuration is achieved in terms of energy absorption and damage resistance for better performance under impact loading.


Sign in / Sign up

Export Citation Format

Share Document