Ballistic performance of quasi-isotropic CFRP laminates under low velocity impact

2021 ◽  
pp. 002199832110238
Author(s):  
Gyanesh Patnaik ◽  
Anshul Kaushik ◽  
Abhishek Rajput ◽  
Guru Prakash ◽  
R Velmurugan

The perforation characteristics of fiber reinforced laminates is crucial for the design of protective civil and military structures. This paper investigates the perforation characteristics (ballistic limit velocity, residual velocity, perforation energy) of cross ply and quasi-isotropic (QI) carbon fiber reinforced polymer (CFRP) laminates under the impact of a rigid conical steel bullet. The influence of thickness and ply orientation on these characteristics is also studied for a wide range of velocities. The perforation characteristics of these laminates were determined, numerically as well as experimentally. A numerical model is developed by using Hashin damage model to understand the behavior of laminates under high velocity impact. The accuracy of the model is assessed by comparing its prediction with experimental results of cross ply laminates. Then, impact perforation study of different possible configurations made of quasi-isotropic (QI) CFRP laminates, oriented at 0°, 90°, 45° and −45° directions are carried out with the help of validated numerical model. The perforation characteristics predicted with the help of numerical model is in good agreement with the experimental results. Optimal configuration is achieved in terms of energy absorption and damage resistance for better performance under impact loading.

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1016
Author(s):  
Chunxing Hu ◽  
Guibin Huang ◽  
Cheng Li

To investigate the mechanical behavior of the single-lap joints (SLJs) adhesively bonded structure of carbon fiber reinforced polymer (CFRP) laminates under the low-velocity impact (LVI) and tensile-after impact (TAI), tests and simulations were carried out. A finite element model (FEM) was established based on the cohesive zone model (CZM) and Hashin criterion to predict the damage evolution process of adhesive film, intra- and inter-laminar of the SLJs of CFRP laminates, and its effectiveness was verified by experiments. Moreover, three different overlap lengths (20 mm, 30 mm, and 40 mm) and four different impact energies (Intact joint, 10 J, 20 J, and 30 J) are considered in the present study. Finally, the effects of different impact energies and overlap lengths on the residual strength of SLJs after impact were discussed. The results divulged that numerical results of impact and TAI processes of SLJs were in good agreement with experiment results. During the impact process, the damage of the laminates was primarily fiber and matrix tensile damage, whereas the adhesive film was damaged cohesively; the areas of damage increased with the increase of impact energy, and the normal stress of the adhesive film expanded from the edge to the middle region with the increase of impact force. The influence of LVI on SLJs adhesively bonded structures was very significant, and it is not effective to obtain a higher impact resistance by increasing the overlap length. For the tensile process, the failure mode of TAI of the SLJs was interface failure, the surplus strength of the SLJs gradually decreased with the increase of the impact energy because of the smaller overlap length, the overlap length more than 30 mm, and the low energy impact has almost no effect on the residual strength of the SLJs.


2010 ◽  
Vol 118-120 ◽  
pp. 226-230
Author(s):  
Xiang Zheng ◽  
Xiao Yan Tong ◽  
Hao Chen ◽  
Lei Jiang Yao

An experimental study of low-velocity impact characteristics and strength after impact was carried out on both woven fiber-reinforced resin matrix composites and woven fiber-reinforced ceramic matrix composites. The test specimens were impacted using a dropped-weight impact test apparatus with an instrumented spherical tip. Ultrasonic C-scan was used in nondestructive testing to characterize and quantify the impact damage. Much more damage of ceramic matrix composites than that of resin matrix composites occur and process in loading stage. The peak load of resin matrix composites is higher than that of ceramic matrix composites. According to the results of observing optical photographs and C-scan images, the damage area of ceramic matrix composites is greater than that of resin matrix composites and the difference increases as the energy increases. Damage resistance of ceramic matrix composites is lower than that of resin matrix composites, but damage tolerance of ceramic matrix composites is higher than that of resin matrix composites.


2020 ◽  
Vol 54 (21) ◽  
pp. 2999-3007
Author(s):  
Hüseyin E Yalkın ◽  
Ramazan Karakuzu ◽  
Tuba Alpyıldız

The aim of the study is to investigate the behavior of laminated composites under low velocity impact both experimentally and numerically. With this aim, the effects of wide range impact energy values between 10 J and 60 J were evaluated experimentally and numerically for the laminate of [±45/(0/90)2]S oriented unidirectional E-glass as reinforcing material and epoxy resin for matrix material. Different impactor velocities were used to maintain the impact energy values and experimental impact tests were generated with drop weight impact testing machine at room temperature. Numerical simulations were performed using LS-DYNA finite element analysis software with a continuum damage mechanics-based material model MAT058. Contact force between impactor and laminate, and transverse deflection at the center of laminate results were obtained as a function of time and used to plot contact force–time curves, contact force–deflection curves and absorbed energy-impact energy curves. Also, delamination area was examined. Finally, numerical results were compared with experimental results and a good correlation between them was observed.


2020 ◽  
pp. 002199832094964
Author(s):  
İbrahim Demirci ◽  
Ahmet Avcı ◽  
Mehmet Turan Demirci

In general the nanoparticles increase the mechanical and impact behaviors of fiber reinforced polymer based composites. However, the effects of the hybridization of nanoparticles and their reasons over the nano scale fracture mechanisms have not been adequately studied for fiber reinforced composites. In this study, the low velocity impact responses and the mechanical behaviors were investigated for 4%wt. SiO2 nanoparticles filled BFR/Epoxy nanocomposites, 0.5%wt. MWCNTs filled BFR/Epoxy nanocomposites, 4%wt. SiO2 nanoparticles and 0.5%wt. MWCNTs nano-hybrid filled BFR/Epoxy nanocomposites and unfilled BFR/Epoxy composites. The tensile and low velocity impact tests at 10 J and 20 J of energy levels were applied to nanoparticles, nano-hybrid and unfilled BFR/Epoxy composites in order to define the effects of nanoparticles and nano-hybrid particles on the impact and mechanical features according to in accordance with ASTM D3039/D3039M-14 and ASTM D7136/7136M standards. It was observed that SiO2 nanoparticles addition to BFR/Epoxy for both 10 J and 20 J showed the highest tensile strength, maximum force, rebound energy and the lowest displacements and absorbed energy. SiO2+MWCNTs nano-hybrid addition to BFR/Epoxy improved higher low velocity impact responses and tensile strength than MWCNTs addition. The specimens of unfilled BFR/Epoxy composites showed the lowest tensile strength and maximum force and the highest maximum force, displacements and absorbed energy. Microscope and SEM analyses demonstrated that minimum failures like fiber breakages, delamination and debonding were observed by filling SiO2 nanoparticles provided the nano scale fracture mechanisms. In addition MWCNTs hybridization with SiO2 nanoparticles minimizes negative effects of MWCNTs micro size length and improved the impact and mechanical behaviors.


2020 ◽  
Vol 54 (23) ◽  
pp. 3415-3433 ◽  
Author(s):  
Mehmet Turan Demirci

Nano-microscale fracture mechanisms, which affect fracture toughness, play an important role in improving the impact characterization of fiber reinforced polymer composites. Therefore, crack behaviors are tried to be controlled with fracture mechanisms by filling nanoparticles into polymer matrix for improving impact characteristics and fracture toughness in latest studies. In this study, it was aimed to investigate the effects of SiO2 nanoparticles addition into epoxy matrix on the low velocity impact characteristics and fracture toughness in basalt fiber reinforced filament wound composite tubes. SiO2 nanoparticle of 4% wt. filled and unfilled ± [55]6 filament wound basalt fiber reinforced/epoxy composite tubes were subjected to low velocity impact tests at 5 J, 10 J, and 15 J of energy levels. It was seen that while the addition of nanoparticles were increasing the maximum impact forces in the range of about 19%–32%, displacements and absorbed energies decreased because of the increase in the bending stiffness. Charpy impact tests were performed to three different notched arc shaped specimens for determining the impact fracture toughness. SiO2 nanoparticles increased the fracture toughness by 20%–23%. It was observed that SiO2 nanoparticles delayed the formation of failures such as debonding and delamination, and reduced the fiber breakage branching in low velocity impact tests. A liquid penetrant test was used to inspect the crack formations and progressions on the impacted surfaces of all composite tubes as practical inspection for industrial applications. It was seen that microscope and SEM analysis supported the liquid penetrant inspection, which is a non-destructive testing method.


2018 ◽  
Vol 779 ◽  
pp. 3-10
Author(s):  
Mihaela Raluca Condruz ◽  
Alexandru Paraschiv ◽  
Ionuț Sebastian Vintilă ◽  
Mihail Sima ◽  
Andreea Deutschlander ◽  
...  

The analysis of damage resulted from concentrated out-of-plane impact forces is a concern in case of fiber reinforced polymeric composite aerostructures. Thereby, it can be quantified in terms of resulting size/damage type by drop weight impact testing. The aim of the present research was to evaluate the impact response of CFRP laminates by FEA and experimental tests. For FEA, two failure criterions were used, energetic criterion and Tsai Wu criterion. In both modeling scenarios the laminate was fractured. In case of the energetic criterion it was observed a meandering crack along with internal delamination of the material plies, while in case of the Tsai Wu criterion the impactor passes through the specimen, destroying the impacted area. Experimental tests performed at 0.7 meters height and 33 J of impact energy showed that all material plies were visible damaged, but the impactor didn’t pass through all specimen thickness. Different damage modes were observed on the tested specimens, the impacted face of the specimen presented a combined damage consisting in large cracks with fiber breakage indentation/puncture and a dent while on the non-impacted side of the specimen splits, cracks and a small swelling were observed. Considering the results from FEA and experimental tests, it can be said that regarding the damage shape, the experimental results are in a good agreement with a combination of the results obtained from the two failure models of FEA.


2021 ◽  
pp. 152808372110154
Author(s):  
Ziyu Zhao ◽  
Tianming Liu ◽  
Pibo Ma

In this paper, biaxial warp-knitted fabrics were produced with different high tenacity polyester linear density and inserted yarns density. The low-velocity impact property of flexible composites made of polyurethane as matrix and biaxial warp-knitted fabric as reinforcement has been investigated. The effect of impactor shape and initial impact energy on the impact response of flexible composite is tested. The results show that the initial impact energy have minor effect on the impact response of the biaxial warp-knitted flexible composites. The impact resistance of flexible composite specimen increases with the increase of high tenacity polyester linear density and inserted yarns density. The damage morphology of flexible composite materials is completely different under different impactor shapes. The findings have theoretical and practical significance for the applications of biaxial warp-knitted flexible composite.


Sign in / Sign up

Export Citation Format

Share Document