Osteocytes and WNT: the Mechanical Control of Bone Formation

2010 ◽  
Vol 89 (4) ◽  
pp. 331-343 ◽  
Author(s):  
C. Galli ◽  
G. Passeri ◽  
G.M. Macaluso

Mechanical loading is of pivotal importance in the maintenance of skeletal homeostasis, but the players involved in the transduction of mechanical stimuli to promote bone maintenance have long remained elusive. Osteocytes, the most abundant cells in bone, possess mechanosensing appendices stretching through a system of bone canaliculi. Mechanical stimulation plays an important role in osteocyte survival and hence in the preservation of bone mechanical properties, through the maintenance of bone hydratation. Osteocytes can also control the osteoblastic differentiation of mesenchymal precursors in response to mechanical loading by modulating WNT signaling pathways, essential regulators of cell fate and commitment, through the protein sclerostin. Mutations of Sost, the sclerostin-encoding gene, have dramatic effects on the skeleton, indicating that osteocytes may act as master regulators of bone formation and localized bone remodeling. Moreover, the development of sclerostin inhibitors is opening new possibilities for bone regeneration in orthopedics and the dental field.

2007 ◽  
Vol 192 (1) ◽  
pp. 131-140 ◽  
Author(s):  
Christianne M A Reijnders ◽  
Nathalie Bravenboer ◽  
Annechien M Tromp ◽  
Marinus A Blankenstein ◽  
Paul Lips

Mechanical loading plays an essential role in maintaining skeletal integrity. Mechanical stimulation leads to increased bone formation. However, the cellular and molecular mechanisms that are involved in the translation of mechanical stimuli into bone formation, are not completely understood. Growth factors and osteocytes, which act as mechanosensors, play a key role during the bone formation after mechanical stimulation. The aim of this study was to characterize the role of IGF-I in the translation of mechanical stimuli into bone formation locally in rat tibiae. Fifteen female Wistar rats were randomly assigned to three groups (n = 5): load, sham-loaded, and control. The four-point bending model of Forwood and Turner was used to induce a single period of mechanical loading on the tibia shaft. The effects of mechanical loading on IGF-I mRNA expression were determined with non-radioactive in situ hybridization on decalcified tibiae sections, 6 h after the loading session. Endogenous IGF-I mRNA was expressed in trabecular and cortical osteoblasts, some trabecular and sub-endocortical osteocytes, intracortical endothelial cells of blood vessels, and periosteum. Megakaryocytes, macrophages, and myeloid cells also expressed IGF-I mRNA. In the growth plate, IGF-I mRNA was located in proliferative and hypertrophic chondrocytes. Mechanical loading did not affect the IGF-I mRNA expression in osteoblasts, bone marrow cells, and chondrocytes, but the osteocytes at the endosteal side of the shaft showed a twofold increase of IGF-I mRNA expression. The proportion of IGF-I mRNA positive osteocytes in loaded tibiae was 29.3 ± 12.9% (mean ± s.d.; n = 5), whereas sham-loaded and contra-lateral control tibiae exhibited 16.7 ± 4.4% (n = 5) and 14.7 ± 4.2% (n = 10) respectively (P < 0.05). Lamellar bone formation after a single mechanical loading session was observed at the endosteal side of the shaft. In conclusion, a single loading session results in a twofold up-regulation of IGF-I mRNA synthesis in osteocytes which are present in multiple layers extending into the cortical bone of mechanically stimulated tibia shaft 6 h after loading. This supports the hypothesis that IGF-I, which is located in osteocytes, is involved in the translation of mechanical stimuli into bone formation.


2021 ◽  
Author(s):  
Lisa Y. Lawson ◽  
Michael D. Brodt ◽  
Nicole Migotsky ◽  
Christopher Chermside-Scabbo ◽  
Ramya Palaniappan ◽  
...  

AbstractWnt signaling is critical to many aspects of skeletal regulation, but the importance of Wnt ligands in adult bone homeostasis and the anabolic response to mechanical loading is not well documented. We inhibited Wnt ligand secretion in adult (5-mo) mice using a systemic (drug) and a bone-targeted (genetic) approach, and subjected them to axial tibial loading to induce lamellar bone formation. Mice treated with the porcupine inhibitor WNT974 exhibited a decrease in bone formation in non-loaded limbs as well as a 54% decline in the periosteal bone formation response to tibial loading. Similarly, within 1-2 weeks of Wls deletion in osteoblasts (Osx-CreERT2;WlsF/F mice), skeletal homeostasis was altered with decreased bone formation and increased resorption, and the anabolic response to loading was reduced 65% compared to control (WlsF/F). These findings establish a requirement for Wnt ligand secretion by osteoblasts for adult bone homeostasis and the anabolic response to mechanical loading.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3164-3164
Author(s):  
Fani Ziouti ◽  
Maximilian Rummler ◽  
Andreas Brandl ◽  
Andreas Beilhack ◽  
Maureen Lynch ◽  
...  

Abstract Osteolytic bone disease (BD) is a hallmark of multiple myeloma (MM) with tumor cells in the bone marrow shifting the balance of the bone remodeling process towards massive bone resorption. As a result, patients develop devastating osteolytic lesions that lead to non-healing bone fractures and pain, affecting life quality and mortality rates. Bones have the capacity to adapt mass and structure to mechanical stimuli, as dramatically seen in young tennis athletes with muscle-bone asymmetries in the playing arm. We have previously shown that tibial mechanical loading rescued bone loss in our murine MOPC315.BM MM model with an advanced osteolytic phenotype. Here, we hypothesize that mechanical strain (1) modulates the bone microenvironment and (2) has antitumor activity in mice. (1) We determined bone formation and bone resorption parameters by time-lapsed microCT analysis to show how skeletal mechanical stimuli control MM bone disease (MMBD) progression over time. (2) To monitor tumor progression, we used non-invasive bioluminescence imaging (BLI) and enzyme-linked immunosorbent assay (ELISA) for detection of MOPC315.BM specific immunoglobulin A (IgA) levels. In our in vivo loading study, we injected MOPC315.BM cells intratibially (i.t.) in BALB/c mice to establish MMBD (n=17) and used PBS-injected (n=13) as well as noninjected mice (n=8) as controls. Eight (MM), seven (PBS) and 8 (noninjected) mice received compressive tibial loading for three weeks while nine (MM) and six (PBS) mice served as nonloaded controls. The bone remodeling response to mechanical loading was investigated by longitudinal in vivo microCT imaging performed every 5 days (at day 13, 18, 23, 28, and 33 after i.t. injection). MicroCT images from day 33 were geometrically registered onto images of day 13 and resampled into the same coordinate system using Amira and scripts written in Matlab for post-processing. Normalized newly mineralized and eroded bone volume (MV/BV, EV/BV), normalized formed and eroded bone surface area (MS/BS, ES/BS), mineralized thickness (MTh) and eroded depth (ED) were quantified. ANOVA was performed to examine the effect of loading and injection. Loading significantly increased the periosteal MV/BV, periosteal and endosteal MS/BS as well as decreased the periosteal EV/BV and periosteal and endocortical ES/BS. Endosteal MV/BV or EV/BV were not affected, which may be due to differences in the local strain environment at the two surfaces. In addition, mechanical stimuli did not influence ED, but led to diminished periosteal EV/BV and periosteal ES/BS suggesting fewer resorption sites in tibiae subjected to loading. Injection significantly affected periosteal and endosteal bone formation and resorption (Fig.1). Significant increases in cortical bone mass of loaded MM mice were accompanied by decreases in tumor load as evidenced by MOPC315.BM specific IgA levels (Fig. 2A). Interestingly, quantification of tibial and whole body bioluminescence signal intensities revealed controlled tumor growth in the loaded left tibia and a further delay of tumor cell dissemination throughout body of MM mice (Fig. 2B). Our data provide evidence that skeletal mechanical stimuli have anti-myeloma effects and rescue osteolytic bone loss in MMBD. The anabolic response to mechanical loads outweighs the anti-resorptive effect of MM cells, suggesting a combination of loading with bone resorption inhibitors in future therapeutic strategies. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 48 (1) ◽  
pp. 215-226 ◽  
Author(s):  
Qingguo Gu ◽  
Haijun Tian ◽  
Kai Zhang ◽  
Deyu Chen ◽  
Dechun Chen ◽  
...  

Background/Aims: Mechanical stimulation and WNT signalling have essential roles in regulating the osteogenic differentiation of bone marrow stromal cells (BMSCs) and bone formation. However, little is known regarding the regulation of WNT signalling molecule expression and therefore the osteogenic differentiation of BMSCs during osteogenesis. Methods: Microarrays of BMSCs from elderly individuals or patients with osteoporosis (GSE35959) from the GEO database were analysed using GeneSight-Lite 4.1.6 (BioDiscovery) and C2 curated gene sets downloaded from Molecular Signatures Database (MSigDB). Realtime PCR and western blotting were used to measure the expression of the indicated genes. ALP and Alizarin red staining were used to evaluate the osteogenesis of BMSCs. Results: In this study, we investigated whether mechanical loading directly regulates the expression of WNT signalling molecules and examined the role of WNT signalling in mechanical loading-triggered osteogenic differentiation and bone formation. We first studied the microarrays of samples from patients with osteoporosis and found downregulation of the GPCR ligand binding gene set in the BMSCs of patients with osteoporosis. Then, we demonstrated that mechanical stimuli can regulate osteogenesis and bone formation both in vivo and in vitro. FZD4 was upregulated during cyclic mechanical stretch (CMS)-induced osteogenic differentiation, and the JNK signalling pathway was activated. FZD4 knockdown inhibited the mechanical stimuli-induced osteogenesis and JNK activity. More importantly, we found an activating effect of WNT5A and FZD4 that regulated bone formation in response to hindlimb unloading in mice, and pretreatment with WNT5A or activation of the expression of FZD4 partly rescued the osteoporosis caused by mechanical unloading. Conclusions: Our results demonstrate, for the first time, that mechanical stimulation alters the expression of genes involved in the osteogenic differentiation of BMSCs via the direct regulation of FZD4 and that therapeutic WNT5A and FZD saRNA may be an efficient strategy for enhancing bone formation under mechanical stimulation.


2021 ◽  
Vol 11 (5) ◽  
pp. 2025
Author(s):  
Marzia Ferretti ◽  
Carla Palumbo

In contrary to what has traditionally been believed, bone formation can occur through two different types of osteogenesis: static (SO) and dynamic (DO) osteogenesis, which are thus named because the former is characterized by pluristratified cords of unexpectedly stationary osteoblasts which differentiate at a fairly constant distance from the blood capillaries and transform into osteocytes without moving from the onset site, while the latter is distinguished by the well-known typical monostratified laminae of movable osteoblasts. The two types of osteogenesis differ in multiple aspects from both structural and functional viewpoints. Besides osteoblast arrangement, polarization, and motion, SO and DO differ in terms of time of occurrence (first SO and later DO), conditioning factors to which they are sensitive (endothelial-derived cytokines or mechanical loading, respectively), distribution of osteocytes to which they give rise (haphazard or ordered in planes, respectively), the collagen texture resulting from the different deposition types (woven or lamellar, respectively), the mechanical properties of the bone they form (poor for SO due to the high cellularity and woven texture and good for DO since osteocytes are located in more suitable conditions to perceive loading), and finally the functions of each, i.e., SO provides a preliminary rigid scaffold on which DO can take place, while DO produces bone tissue according to mechanical/metabolic needs..


Author(s):  
JENNEKE KLEIN-NULEND ◽  
ROMMEL GAUD BACABAC

Bone is a dynamic tissue that is constantly renewed and adapts to its local loading environment. Mechanical loading results in adaptive changes in bone size and shape that strengthen bone structure. The mechanisms for adaptation involve a multistep process called mechanotransduction, which is the ability of resident bone cells to perceive and translate mechanical energy into a cascade of structural and biochemical changes within the cells. The transduction of a mechanical signal to a biochemical response involves pathways within the cell membrane and cytoskeleton of the osteocytes, the professional mechansensor cells of bone. During the last decade the role of mechanosensitive osteocytes in bone metabolism and turnover, and the lacuno-canalicular porosity as the structure that mediates mechanosensing, is likely to reveal a new paradigm for understanding the bone formation response to mechanical loading, and the bone resorption response to disuse. Strain-derived fluid flow of interstitial fluid through the lacuno-canalicular porosity seems to mechanically activate the osteocytes, as well as ensures transport of cell signaling molecules, nutrients and waste products. Cell-cell signaling from the osteocyte sensor cells to the effector cells (osteoblasts or osteoclasts), and the effector cell response – either bone formation or resorption, allow an explanation of local bone gain and loss as well as remodeling in response to fatigue damage as processes supervised by mechanosensitive osteocytes. The osteogenic activity of cultured bone cells has been quantitatively correlated with varying stress stimulations highlighting the importance of the rate of loading. Theoretically a possible mechanism for the stress response by osteocytes is due to strain amplification at the pericellular matrix. Single cell studies on molecular responses of osteocytes provide insight on local architectural alignment in bone during remodeling. Alignment seems to occur as a result of the osteocytes sensing different canalicular flow patterns around cutting cone and reversal zone during loading, thus determining the bone's structure. Disturbances in architecture and permeability of the 3D porous network will affect transduction of mechanical loads to the mechanosensors. Uncovering the cellular and mechanical basis of the osteocyte's response to loading represents a significant challenge to our understanding of cellular mechanotransduction and bone remodeling. In view of the importance of mechanical stress for maintaining bone strength, mechanical stimuli have great potential for providing a therapeutic approach for bone (re)generation.


Author(s):  
X. Chen ◽  
R. Hughes ◽  
N. Mullin ◽  
R. J. Hawkins ◽  
I. Holen ◽  
...  

ABSTRACTBones are structurally heterogeneous organs with diverse functions that undergo mechanical stimuli across multiple length scales. Mechanical characterisation of the bone microenvironment is important for understanding how bones function in health and disease. Here we describe the mechanical architecture of cortical bone, the growth plate, metaphysis and marrow in fresh murine bones, probed using atomic force microscopy in physiological buffer. Both elastic and viscoelastic properties are found to be highly heterogeneous with moduli ranging over 3 to 5 orders of magnitude, both within and across regions. All regions include extremely soft areas, with moduli of a few Pascal and viscosities as low as tens Pa⋅s. Aging impacts the viscoelasticity of the bone marrow strongly but has limited effect on the other regions studied. Our approach provides the opportunity to explore the mechanical properties of complex tissues at the length scale relevant to cellular processes and how these impact on aging and disease.SIGNIFICANCEThe mechanical properties of biological materials at cellular scale are involved in guiding cell fate. However, there is a critical gap in our knowledge of such properties in complex tissues. The physiochemical environment surrounding the cells in in-vitro studies differs significantly from that found in vivo. Existing mechanical characterisation of real tissues are largely limited to properties at larger scales, structurally simple (e.g. epithelial monolayers) or non-intact (e.g. through fixation) tissues. In this paper, we address this critical gap and present the micro-mechanical properties of the relatively intact bone microenvironment. The measured Young’s moduli and viscosity provide a sound guidance in bioengineering designs. The striking heterogeneity at supracellular scale reveals the potential contribution of the mechanical properties in guiding cell behaviour.


2015 ◽  
pp. 1
Author(s):  
Kenji Miyahara ◽  
Takao Watamoto ◽  
Yusuke Uto ◽  
Takashi Sawase

2021 ◽  
Author(s):  
Bingzi Dong ◽  
Masahiro Hiasa ◽  
Itsuro Endo ◽  
Yukiyo Ohnishi ◽  
Takeshi Kondo ◽  
...  

Abstract Exercise offers mechanical loading to the bone, while it stimulates energy expenditure in the adipose tissue. Thus, bone may secrete a factor to communicate with adipose tissue in response to mechanical loading. Interleukin (IL)-11 is expressed in the bone, upregulated by mechanical loading, enhances osteogenesis and suppresses adipogenesis. Systemic IL-11 deletion (IL-11−/−) exhibited reduced bone mass, suppressed bone formation response to mechanical loading, enhanced expression of Wnt inhibitors, and suppressed Wnt signaling. Enhancement of bone resorption under mechanical unloading was unaffected. Unexpectedly, IL-11−/− mice showed increased systemic adiposity and glucose intolerance. Osteoblast/osteocyte-specific IL-11 deletion in osteocalcin-Cre;IL-11fl/fl mice showed reduced serum IL-11, blunted bone formation under mechanical loading, and increased systemic adiposity similar to IL-11−/− mice. Adipocyte-specific IL-11 deletion in adiponectin-Cre; IL-11fl/fl mice exhibited no abnormality. Thus, IL-11 from osteoblast/osteocyte controls both osteogenesis and systemic adiposity in response to mechanical loading. These findings may bring new therapeutic approaches to osteoporosis and metabolic syndrome.


Sign in / Sign up

Export Citation Format

Share Document