Clinical Performance and Physical Properties of Twelve Amalgam Alloys

1978 ◽  
Vol 57 (11-12) ◽  
pp. 983-988 ◽  
Author(s):  
J.W. Osborne ◽  
E.N. Gale ◽  
C.L. Chew ◽  
B.F. Rhodes ◽  
R.W. Phillips

An assessment of the marginal failure rate of 1,041 restorations of twelve alloys was made at one year. In addition, physical property tests were conducted. A correlation was found between the clinical performance and creep (.79), flow (.62) and 24-hour compressive strength (.60).

2020 ◽  
pp. 147592172097699
Author(s):  
Isabel M Morris ◽  
Vivek Kumar ◽  
Branko Glisic

We present here a laboratory-based experimental protocol that seeks to establish and characterize the relationship between ground-penetrating radar attributes and the mechanical properties (density, porosity, and compressive strength) of typical industry concrete mixes. The experimental data consist of ground-penetrating radar attributes from 900 MHz radargrams that correspond to simultaneously measured physical properties of Portland cement concrete, alkali-activated concrete, and cement mortar. Appropriate regression models are trained and tested on this data set to predict each physical property from ground-penetrating radar attributes. From a small selection of individual attributes, including total phase and intensity, trained random forest regression models predict porosity ( R2 = 0.83 from the instantaneous amplitude), density ( R2 = 0.67 from the intensity attribute), and compressive strength ( R2 = 0.51 from instantaneous amplitude). These novel relationships between physical properties and ground-penetrating radar attributes indicate that material properties could be predicted from the attributes of ordinary ground-penetrating radar scans of concrete.


Author(s):  
Isabel M. Morris ◽  
Vivek Kumar ◽  
Claire E. White ◽  
Branko Glisic

<p>When faced with the problems of aging infrastructure and historic constructions, there are many unknowns such as physical properties and arrangements of materials. This information is necessary for estimating the capacity, safety, and overall condition and for ensuring successful maintenance or repair of the structure. Often, this information is only available through invasive means, which can be unsightly, legally prohibited, or too expensive. Ground penetrating radar (GPR) is a noninvasive assessment tool successful at infrastructure inspection, feature detection, and condition assessments. An experiment was designed to investigate the ability of GPR to predict the physical properties (compressive strength, young’s modulus, and porosity) of concrete samples. A set of samples with variable properties and mix designs was fabricated. The samples were tested both with traditional methods (physical destructive testing) and by noninvasive GPR scanning at 7, 14, 28, and 56 days. A variety of machine learning approaches were used to investigate correlations between the physical property data and the GPR data, resulting in a model that predicts the density, compressive strength, and porosity of concrete with some success (R<span>2</span>-values between 0.4 and 0.8). This predictive model is currently being further developed and tested on several case studies.</p>


2012 ◽  
Vol 512-515 ◽  
pp. 421-424
Author(s):  
Xiao Hua Yu ◽  
Ning Fang ◽  
Yong Gang Li ◽  
Gang Xie ◽  
Lin Tian

The cold ramming paste for aluminum electrolysis has been studied using electrically calcined anthracite as aggregate, medium temperature pitch and anthracene oil as binder, metallic silicon powder as additive in the paper. The effects of addition of silicon on volume density, compressive strength, electrical resistivity, shrinkage value have been studied. The results show that: volume density, compressive strength of cold ramming paste are increased firstly and then decreased with the addition of silicon increasing, and electrical resistivity, shrinkage value are decreased firstly and then increased with the addition of silicon increasing. So when the addition of silicon is 3%, the physical properties are preferable.


2012 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Djoko Purwanto

Timber Acacia mangium (Acacia mangium, Willd) for Furniture. The study aims to determine the mechanical and physical properties and the decorative value (color and fiber) wood of acacia mangium with using finishing materials. This type of finishing material used is ultran lasur natural dof ,ultran lasur classic teak, aqua politur clear dof, aqua politur akasia dan aqua politur cherry. After finishing the wood is stored for 3 months. Test parameters were observed, namely, physical and mechanical properties of wood, adhesion of finishing materials, color and appearance of the fiber, and timber dimensions expansion. The results showed that the mechanical physical properties of acacia wood qualified SNI. 01-0608-89 about the physical and mechanical properties of wood for furniture, air dry the moisture content from 13.78 to 14.89%, flexural strength from 509.25 to 680.50 kg/cm2, and compressive strength parallel to fiber 342.1 - 412.9 kg/cm2. Finishing the treatment process using five types of finishing materials can increase the decorative value (color and fiber) wood. Before finishing the process of acacia mangium wood has the appearance of colors and fibers and less attractive (scale scores 2-3), after finishing acacia wood fibers have the appearance of colors and interesting and very interesting (scale 4-5).Keywords: mangium wood, mechanical properties, decorative value, finishing, furniture.


Alloy Digest ◽  
1995 ◽  
Vol 44 (12) ◽  

Abstract COLMONOY No. 83 PTA is a nickel-base hard surfacing alloy containing tungsten carbide. The application method is plasma transferred arc and the application is designed to protect extrusion screws. This datasheet provides information on composition, physical properties, microstructure, hardness, tensile properties, and compressive strength. It also includes information on wear resistance as well as machining and powder metal forms. Filing Code: Ni-493. Producer or source: Wall Colmonoy Corporation.


Alloy Digest ◽  
1954 ◽  
Vol 3 (8) ◽  

Abstract Federaloy F-1 is a copper tin-zinc bearing bronze whose strength suits it for applications where loads are heavy. It should be used only where lubrication is exceptionally good or motion is of a rocking nature. It is also a good gear bronze. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fracture toughness, creep, and deformation. It also includes information on high temperature performance and corrosion resistance as well as casting, machining, and joining. Filing Code: Cu-19. Producer or source: Federal-Mogul Corporation.


Alloy Digest ◽  
1963 ◽  
Vol 12 (1) ◽  

Abstract Colmonoy No. 6 is a high-carbon, nickel-base alloy recommended for hard facing parts to resist wear, corrosion, heat and galling. This datasheet provides information on composition, physical properties, hardness, elasticity, and compressive strength. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-78. Producer or source: Wall Colmonoy Corporation.


Alloy Digest ◽  
2005 ◽  
Vol 54 (3) ◽  

Abstract MoldStar 90 is a high-performance beryllium-free copper alloy for the blow-molding and injection-molding industries. This datasheet provides information on composition, physical properties, hardness, tensile properties, and compressive strength. It also includes information on machining, joining, and surface treatment. Filing Code: CU-732. Producer or source: Performance Alloys.


Alloy Digest ◽  
2005 ◽  
Vol 54 (2) ◽  

Abstract MoldStar 150 (formerly PAS 940) is a high performance copper alloy for the blow-molding and injection-molding industries. This datasheet provides information on composition, physical properties, tensile properties, and compressive strength. It also includes information on forming, machining, joining, and surface treatment. Filing Code: CU-729. Producer or source: Performance Alloys.


Alloy Digest ◽  
1982 ◽  
Vol 31 (6) ◽  

Abstract Copper Alloy No. C93500 is a cast bronze containing nominally 9% lead and 5% tin. It has excellent machinability, low strength and good resistance to corrosion. It is used for corrosion-resistant castings, small bearings and bushings. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fracture toughness. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Cu-439. Producer or source: Copper alloy foundries.


Sign in / Sign up

Export Citation Format

Share Document