Experimental approaches to estimate concrete properties with ground penetrating radar

Author(s):  
Isabel M. Morris ◽  
Vivek Kumar ◽  
Claire E. White ◽  
Branko Glisic

<p>When faced with the problems of aging infrastructure and historic constructions, there are many unknowns such as physical properties and arrangements of materials. This information is necessary for estimating the capacity, safety, and overall condition and for ensuring successful maintenance or repair of the structure. Often, this information is only available through invasive means, which can be unsightly, legally prohibited, or too expensive. Ground penetrating radar (GPR) is a noninvasive assessment tool successful at infrastructure inspection, feature detection, and condition assessments. An experiment was designed to investigate the ability of GPR to predict the physical properties (compressive strength, young’s modulus, and porosity) of concrete samples. A set of samples with variable properties and mix designs was fabricated. The samples were tested both with traditional methods (physical destructive testing) and by noninvasive GPR scanning at 7, 14, 28, and 56 days. A variety of machine learning approaches were used to investigate correlations between the physical property data and the GPR data, resulting in a model that predicts the density, compressive strength, and porosity of concrete with some success (R<span>2</span>-values between 0.4 and 0.8). This predictive model is currently being further developed and tested on several case studies.</p>

2020 ◽  
pp. 147592172097699
Author(s):  
Isabel M Morris ◽  
Vivek Kumar ◽  
Branko Glisic

We present here a laboratory-based experimental protocol that seeks to establish and characterize the relationship between ground-penetrating radar attributes and the mechanical properties (density, porosity, and compressive strength) of typical industry concrete mixes. The experimental data consist of ground-penetrating radar attributes from 900 MHz radargrams that correspond to simultaneously measured physical properties of Portland cement concrete, alkali-activated concrete, and cement mortar. Appropriate regression models are trained and tested on this data set to predict each physical property from ground-penetrating radar attributes. From a small selection of individual attributes, including total phase and intensity, trained random forest regression models predict porosity ( R2 = 0.83 from the instantaneous amplitude), density ( R2 = 0.67 from the intensity attribute), and compressive strength ( R2 = 0.51 from instantaneous amplitude). These novel relationships between physical properties and ground-penetrating radar attributes indicate that material properties could be predicted from the attributes of ordinary ground-penetrating radar scans of concrete.


2021 ◽  
Vol 13 (9) ◽  
pp. 1846
Author(s):  
Vivek Kumar ◽  
Isabel M. Morris ◽  
Santiago A. Lopez ◽  
Branko Glisic

Estimating variations in material properties over space and time is essential for the purposes of structural health monitoring (SHM), mandated inspection, and insurance of civil infrastructure. Properties such as compressive strength evolve over time and are reflective of the overall condition of the aging infrastructure. Concrete structures pose an additional challenge due to the inherent spatial variability of material properties over large length scales. In recent years, nondestructive approaches such as rebound hammer and ultrasonic velocity have been used to determine the in situ material properties of concrete with a focus on the compressive strength. However, these methods require personnel expertise, careful data collection, and high investment. This paper presents a novel approach using ground penetrating radar (GPR) to estimate the variability of in situ material properties over time and space for assessment of concrete bridges. The results show that attributes (or features) of the GPR data such as raw average amplitudes can be used to identify differences in compressive strength across the deck of a concrete bridge. Attributes such as instantaneous amplitudes and intensity of reflected waves are useful in predicting the material properties such as compressive strength, porosity, and density. For compressive strength, one alternative approach of the Maturity Index (MI) was used to estimate the present values and compare with GPR estimated values. The results show that GPR attributes could be successfully used for identifying spatial and temporal variation of concrete properties. Finally, discussions are presented regarding their suitability and limitations for field applications.


1978 ◽  
Vol 57 (11-12) ◽  
pp. 983-988 ◽  
Author(s):  
J.W. Osborne ◽  
E.N. Gale ◽  
C.L. Chew ◽  
B.F. Rhodes ◽  
R.W. Phillips

An assessment of the marginal failure rate of 1,041 restorations of twelve alloys was made at one year. In addition, physical property tests were conducted. A correlation was found between the clinical performance and creep (.79), flow (.62) and 24-hour compressive strength (.60).


2021 ◽  
Vol 13 (18) ◽  
pp. 3696
Author(s):  
Yuri Álvarez López ◽  
María García-Fernández

Ground Penetrating Radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in Non-Destructive Testing (NDT), since it is able to detect both metallic and nonmetallic targets [...]


2020 ◽  
Author(s):  
Livia Lantini ◽  
Fabio Tosti ◽  
Iraklis Giannakis ◽  
Kevin Jagadissen Munisami ◽  
Dale Mortimer ◽  
...  

&lt;p&gt;Street trees are widely recognised to be an essential asset for the urban environment, as they bring several environmental, social and economic benefits [1]. However, the conflicting coexistence of tree root systems with the built environment, and especially with road infrastructures, is often cause of extensive damage, such as the uplifting and cracking of sidewalks and curbs, which could seriously compromise the safety of pedestrians, cyclists and drivers.&lt;/p&gt;&lt;p&gt;In this context, Ground Penetrating Radar (GPR) has long been proven to be an effective non-destructive testing (NDT) method for the evaluation and monitoring of road pavements. The effectiveness of this tool lies not only in its ease of use and cost-effectiveness, but also in the proven reliability of the results provided. Besides, recent studies have explored the capability of GPR in detecting and mapping tree roots [2]. Algorithms for the reconstruction of the tree root systems have been developed, and the spatial variations of root mass density have been also investigated [3].&lt;/p&gt;&lt;p&gt;The aim of this study is, therefore, to investigate the GPR potential in mapping the architecture of root systems in street trees. In particular, this research aims to improve upon the existing methods for detection of roots, focusing on the identification of the road pavement layers. In this way, different advanced signal processing techniques can be applied at specific sections, in order to remove reflections from the pavement layers without affecting root detection. This allows, therefore, to reduce false alarms when investigating trees with root systems developing underneath road pavements.&lt;/p&gt;&lt;p&gt;In this regard, data from trees of different species have been acquired and processed, using different antenna systems and survey methodologies, in an effort to investigate the impact of these parameters on the GPR overall performance.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Acknowledgements&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;The authors would like to express their sincere thanks and gratitude to the following trusts, charities, organisations and individuals for their generosity in supporting this project: Lord Faringdon Charitable Trust, The Schroder Foundation, Cazenove Charitable Trust, Ernest Cook Trust, Sir Henry Keswick, Ian Bond, P. F. Charitable Trust, Prospect Investment Management Limited, The Adrian Swire Charitable Trust, The John Swire 1989 Charitable Trust, The Sackler Trust, The Tanlaw Foundation, and The Wyfold Charitable Trust. This paper is dedicated to the memory of our colleague and friend Jonathan West, one of the original supporters of this research project.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&lt;strong&gt;References&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;[1] J. Mullaney, T. Lucke, S. J. Trueman, 2015. &amp;#8220;A review of benefits and challenges in growing street trees in paved urban environments,&amp;#8221; Landscape and Urban Planning, 134, 157-166.&lt;/p&gt;&lt;p&gt;[2] A. M. Alani, L. Lantini, 2019. &amp;#8220;Recent advances in tree root mapping and assessment using non-destructive testing methods: a focus on ground penetrating radar,&amp;#8221; Surveys in Geophysics, 1-42.&lt;/p&gt;&lt;p&gt;[3] L. Lantini, F. Tosti, Giannakis, I., Egyir, D., A. Benedetto, A. M. Alani, 2019. &amp;#8220;A Novel Processing Framework for Tree Root Mapping and Density Estimation using Ground Penetrating Radar,&amp;#8221; In 10th International Workshop on Advanced Ground Penetrating Radar, EAGE.&lt;/p&gt;


2019 ◽  
Vol 11 (23) ◽  
pp. 2814 ◽  
Author(s):  
Sossa ◽  
Pérez-Gracia ◽  
González-Drigo ◽  
Rasol

Corrosion is a significant damage in many reinforced concrete structures, mainly in coastal areas. The oxidation of embedded iron or steel elements degrades rebar, producing a porous layer not adhered to the metallic surface. This process could completely destroy rebar. In addition, the concrete around the metallic targets is also damaged, and a dense grid of fissures appears around the oxidized elements. The evaluation of corrosion is difficult in early stages, because damage is usually hidden. Non-destructive testing measurements, based on non-destructive testing (NDT) electric and magnetic surveys, could detect damage as consequence of corrosion. The work presented in this paper is based in several laboratory tests, which are centered in defining the effect of different corrosion stage on ground penetrating radar (GPR) signals. The analysis focuses on the evaluation of the reflected wave amplitude and its behavior. The results indicated that an accurate analysis of amplitude decay and intensity could most likely reveal an approach to the state of degradation of the embedded metallic targets because GPR images exhibit characteristics that depend on the effects of the oxidized rebar and the damaged concrete. These characteristics could be detected and measured in some cases. One important feature is referred to as the reflected wave amplitude. In the case of corroded targets, this amplitude is lower than in the case of reflection on non-oxidized surfaces. Additionally, in some cases, a blurred image appears related to high corrosion. The results of the tests highlight the higher amplitude decay of the cases of specimens with corroded elements.


Author(s):  
Abdul Razzak T. Ziboon ◽  
Nisreen S. Mohammed ◽  
Nisreen S. Mohammed ◽  
Anaam G. Hamad

Ground-Penetrating Radar (GPR) is extensively used by a multiple group of service providers that incorporate agronomist, archaeologists, criminologists, engineers, environmental specialists, foresters, geologists, geophysicists, hydrologists, land use managers, and soil scientists. In engineering applications include Non-Destructive Testing (NDT) of structures and pavements and locating buried structures etc. GPR is a relatively new geophysical tool that has become increasingly popular due to its high resolution and the need to better understand near-surface conditions. In this paper GPR is applied to six concrete slabs. Radar measurements were performed using a 1000 MHz RAMAC GPR CU-II. Two concrete slabs weren’t reinforced, two have simple reinforcement, and the last two have artificial gaps in their reinforcement. Tests were taken after applying 40% of the slabs’ failure loads. Experiments resulted that the extent and severity of the fatigue cracking was possible to be monitored. In addition, the technique was assistive in determining the failure caused by loading reflected by radargrams.


Author(s):  
J. Yang ◽  
M. Fu

Due to the use of wood and other non-permanent materials, traditional Chinese architecture is one of the most fragile constructions in various heritage objects today. With the increasing emphasis on the protection of cultural relics, the repair project of wooden structure has become more and more important. There are various kinds of destructions, which pose a hidden danger to the overall safety of the ancient buildings, caused not only by time and nature, but also by improper repairs in history or nowadays. Today, the use of digital technology is a basic requirement in the conservation of cultural heritage. Detection technology, especially non-destructive testing technology, could provide more accurate records in capturing detailed physical characteristics of structures such as geometric deformation and invisible damage, as well as prevent a man-made destruction in the process of repair project. This paper aims to interpret with a typical example, Ancestral Temple in Mukden Palace, along with a discussion of how to use the non-destructive testing technology with ground penetrating radar, stress wave, resistograph and so on, in addition to find an appropriate protection method in repair project of traditional Chinese wooden architecture.


Sign in / Sign up

Export Citation Format

Share Document