An in sita Model for Simultaneous Assessment of Inhibition of Demineralization and Enhancement of Remineralization

1992 ◽  
Vol 71 (3_suppl) ◽  
pp. 804-810 ◽  
Author(s):  
J.D.B. Featherstone ◽  
D.T. Zero

In situ models to assess the ability of oral care products or food components to enhance remineralization and/or inhibit demineralization of tooth enamel or roots must be very carefully designed to minimize the confounding effects of the many variables involved. Controlling these variables as closely as possible is essential if meaningful answers are to be obtained from the models. We have developed an in situ model which combines the experience of several groups. Detailed screening of subjects is essential. Selection criteria should include good general health, good dental health, mandibular partial denture, at least eight natural teeth, no active caries lesions, known fluoride history, normal salivary function, and no medications that affect salivary function. Each subject carries a sound enamel slab and an enamel slab with a pre-formed caries-like lesion (demineralized in vitro) in his/her denture on each side of the mouth for test periods of two or four weeks. The demineralization challenge is controlled by extra-oral immersion of the appliances in sucrose daily. Daily product exposure or daily food component exposure is used as desired. Compliance indicators and a diet diary are included. Whole saliva flow rate (unstimulated), plaque acidogenicity, and salivary fluoride are monitored during the test periods. At the end of the test period, the test slabs are assessed for mineral change, after being sectioned, by means of cross-sectional microhardness or microradiography. The mineral loss or gain (ΔM, μm × vol%), compared with adjacent control sections retained in the lab, is calculated as change in ΔZ (μm × vol%), namely, ΔM = ΔZTEST - ΔZ.CONTROL. In this model, demineralization occurs in sound enamel and in the pre-formed lesions in the absence of fluoride or other protective agents. The model has the potential to be able to differentiate among fluoride delivery systems and to assess the caries-protective effects of agents other than fluoride by use of small groups of subjects.

1993 ◽  
Vol 4 (3) ◽  
pp. 357-362 ◽  
Author(s):  
J.D.B. Featherstone ◽  
J.M. Behrman ◽  
J.E. Bell

The aim of the present study was to use an in vitro enamel demineralization model (1) to confirm that whole saliva pretreatment conferred acid resistance to dental enamel and (2) to determine whether this phenomenon was attributable to specific salivary proteins, minerals, lipids, or some combination of these. Crowns of human teeth, each with one exposed window, were prepared in groups of ten. They were each pretreated by immersion individually in 4 ml of either (1) clarified whole saliva for 18, 72, or 168 h, (2) dialyzed saliva (3500 MWCO membrane), (3) the "flow-through" fraction from a DEAE separation of whole saliva (neutral and basic proteins), (4) the "eluted" fraction of a DEAE separation of whole saliva (anionic proteins), or (5) a combination of salivary lipids and the DEAE "flow-through" fraction of whole saliva (neutral and basic proteins). Control groups were group 6 with no pretreatment, group 7 pretreated for 168 h in a borate buffer (5 mmol/1), and group 8 pretreated in a mineral solution containing calcium (0.7 mmol/1) and phosphate (2.6 mmol/1). The crowns were then demineralized for 7 d in vitro (0.1 mol/1 acetate, 1 mmol/l Ca and phosphate, pH 5.0) to produce artificial caries-like lesions. Lesions were assessed by cross-sectional microhardness profiles, and mineral loss (AZ, μm x vol% mineral) calculated. Mineral loss (AZ) values decreased linearly with the square root of time of pretreatment by whole saliva, confirming a time-dependent protective effect of salivary pellicle against demineralization of enamel. Pretreatments (168 h) by whole saliva (group 1), dialyzed saliva (group 2), and lipid/'flow through" proteins (group 5) gave equivalent protection (approximately 55%). However, no protection was provided by DEAE-separated protein fractions (no lipid present) or by the mineral alone. The protection of surface enamel against demineralization appears to be given by a combination of specifically adsorbed salivary lipids and proteins.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Indra Cahyadinata ◽  
Indasah Indasah ◽  
Sandu Siyoto

Dental health personnel in carrying out daily care can not be separated from contact with saliva and blood which can be an intermediary in the spread of cross infection. Cross infection is common in medical treatment procedures including dental and oral care. Prevention of cross infection needs to be done to avoid transmission of disease from medical procedures to patients and dental health workers. The purpose of this study was to determine the factors that influence the compliance of the dentist Koas to the application of the Precaution Standard at RSGM IIK BW Kediri. The method in this study was observational descriptive with cross-sectional design. The number of samples is 67 Koas dentists using the Slovin formula. The tools and materials used in the research are check list sheets and stationery. The data processing in this study uses the SPSS program by using a binary logistic test. The results of this study indicate that from several factors that influence the compliance of dentist councils in applying the precaution standard at RSGM IIK BW Kediri is a knowledge factor of p = 0.010 (<0.005), supervision is p = 0.003 (<0.005), and the availability of infrastructure is p = 0.006 (<0.005) with supervisory variables which are the variables that have the most individual influence compared to the other variables. Thus in drawing the conclusion that the level of knowledge, supervision and facilities and infrastructure is a factor that influences the compliance of dentists in implementing the implementation of precaution standards that have been set for prevention of cross infection.


1989 ◽  
Vol 67 (1) ◽  
pp. 174-180 ◽  
Author(s):  
T. M. Murphy ◽  
R. W. Mitchell ◽  
J. S. Blake ◽  
M. M. Mack ◽  
E. A. Kelly ◽  
...  

We studied the effect of maturation on contractile properties of tracheal smooth muscle from seventeen 2-wk-old swine (2ws) and fifteen 10-wk-old swine (10ws) in situ and in vitro. The response to parasympathetic stimulation was studied in situ in isometrically fixed segments. Contraction was elicited at lower frequencies [half-maximal response to electrical stimulation (ES50) = 6.7 +/- 0.05 Hz] in 2ws than in 10ws (ES50 = 9.1 +/- 0.4 Hz; P less than 0.01). Despite substantial differences in morphometrically normalized cross-sectional area in 2ws (0.012 +/- 0.003 cm2) and 10ws (0.028 +/- 0.001 cm2; P less than 0.01), maximal active tension elicited by parasympathetic stimulation was similar (12.4 +/- 3.2 g/cm in 2ws vs. 13.3 +/- 2.3 g/cm in 10ws; P = NS). In separate in vitro studies in 25 tracheal smooth muscle strips from 10 swine, concentration-response curves generated with potassium-substituted Krebs solution (KCl) were similar in 2ws and 10ws. In 58 other strips (10 swine), maximal active force elicited with acetylcholine (ACh) in 2ws was significantly greater than for 10ws (P less than 0.001). Removal of the epithelium had no effect. However, cholinesterase inhibition with 10(-7) M physostigmine augmented the response to ACh in 10ws (P less than 0.02) but not 2ws. We demonstrate increased force generation and sensitivity to vagal stimulation in 2ws vs. 10ws, which corresponds to increased reactivity to ACh in vitro. The relative hyperresponsiveness in 2ws is specific for cholinergic response and is attenuated at least in part by maturation of the activity of acetylcholinesterase enzyme.


2005 ◽  
Vol 94 (1) ◽  
pp. 44-50 ◽  
Author(s):  
Cecilia C. C. Ribeiro ◽  
Cínthia P. M. Tabchoury ◽  
Altair A. Del Bel Cury ◽  
Livia M. A. Tenuta ◽  
Pedro L. Rosalen ◽  
...  

Sincein vitroand animal studies suggest that the combination of starch with sucrose may be more cariogenic than sucrose alone, the study assessedin situthe effects of this association appliedin vitroon the acidogenicity, biochemical and microbiological composition of dental biofilm, as well as on enamel demineralization. During two phases of 14 d each, fifteen volunteers wore palatal appliances containing blocks of human deciduous enamel, which were extra-orally submitted to four groups of treatments: water (negative control, T1); 2 % starch (T2); 10 % sucrose (T3); and 2 % starch+10 % sucrose (T4). The solutions were dripped onto the blocks eight times per day. The biofilm formed on the blocks was analysed with regard to amylase activity, acidogenicity, and biochemical and microbiological composition. Demineralization was determined on enamel by cross-sectional microhardness. The greatest mineral loss was observed for the association starch+sucrose (P<0·05). Also, this association resulted in the highest lactobacillus count in the biofilm formed (P<0·05). In conclusion, the findings suggest that a small amount of added starch increases the cariogenic potential of sucrose.


1994 ◽  
Vol 77 (6) ◽  
pp. 2899-2906 ◽  
Author(s):  
P. Navalesi ◽  
P. Hernandez ◽  
D. Laporta ◽  
J. S. Landry ◽  
F. Maltais ◽  
...  

In situ measurement of distal tracheal pressure (Ptr) via an intraluminal side-hole catheter (IC) has been used to determine endotracheal tube (Rett) and intrinsic patient (Rpt) resistances in intubated subjects. Because of differences in cross-sectional area between the endotracheal tube (ETT) and trachea, fluid dynamic principles predict that IC position should critically influence these results. Accordingly, the aim of this study was to determine the effect of IC position on Rett. Ptr was recorded in vitro through an IC from 2 cm inside, at the tip of, or 2 cm outside an ETT (7, 8, and 9 mm ID) situated within an artificial trachea (13, 18, and 22 mm ID). A reference value of Rett was also obtained. Results were unaffected by IC position during inspiration, overestimating Rett by 7.9 +/- 0.7% (SE). In contrast, during expiration, Rett fell as IC position changed from outside to inside the ETT and was underestimated by 41.3 +/- 3.6% with Ptr recorded inside the ETT. Varying ETT or tracheal size had little effect on the relative error in Rett. The IC itself did increase Rett due to a reduction in effective cross-sectional area, the change varying directly with IC size and inversely with ETT caliber. In vivo values in 11 intubated patients were comparable to in vitro results. In summary, IC position and size can have important consequences on in situ measurements of Ptr and should be considered when clinically monitoring Rett or Rpt.


2003 ◽  
Vol 285 (2) ◽  
pp. H653-H660 ◽  
Author(s):  
Leila H. Hamza ◽  
Quang Dang ◽  
Xiao Lu ◽  
Ayesha Mian ◽  
Sabee Molloi ◽  
...  

The objective of this study was to determine the effect of passive myocardium on the coronary arteries under distension and compression. To simulate distension and compression, we placed a diastolic-arrested heart in a Lucite box, where both the intravascular pressure and external (box) pressure were varied independently and expressed as a pressure difference (ΔP = intravascular pressure – box pressure). The ΔP-cross-sectional area relationship of the first several generations of porcine coronary arteries and the ΔP-volume relationship of the coronary arterial tree (vessels >0.5 mm in diameter) were determined using a video densitometric technique in the range of +150 to –150 mmHg. The vasodilated left anterior descending (LAD) coronary artery of six KCl-arrested hearts were perfused with iodine and 3% Cab-O-Sil. The intravascular pressure was varied in a triangular pattern, whereas the absolute cross-sectional area of each vessel and the total arterial volume were calculated using video densitometry under different box pressures (0, 50, 100, and 150 mmHg). In the range of positive ΔP, we found that the compliance of the proximal LAD artery in situ (4.85 ± 3.8 × 10–3 mm2/mmHg) is smaller than that of the same artery in vitro (16.5 ± 6 × 10–3 mm2/mmHg; P = 0.009). Hence, the myocardium restricts the compliance of the epicardial artery under distension. In the negative ΔP range, the LAD artery does not collapse, whereas the same vessel readily collapses when tested in vitro. Hence, we conclude that myocardial tethering prevents collapse of large blood vessel under compression.


1988 ◽  
Vol 65 (5) ◽  
pp. 2253-2260 ◽  
Author(s):  
G. A. Farkas ◽  
D. F. Rochester

We estimated the in situ force-generating capacity of the costal and crural portions of the canine diaphragm by relating in vitro contractile properties and diaphragmatic dimensions to in situ lengths. Piezoelectric crystals were implanted on right costal and left crural diaphragms of anesthetized dogs, via midline laparatomy. With the abdomen reclosed, diaphragm lengths were recorded at five lung volumes. Contractile properties of excised muscle bundles were then measured. In vitro force-frequency and length-tension characteristics of the costal and crural diaphragms were virtually identical; their optimal force values were 2.15 and 2.22 kg/cm2, respectively. In situ, at residual volume, functional residual capacity (FRC), and total lung capacity the costal diaphragm lay at 102, 95, and 60% of optimal length (Lo), whereas the crural diaphragm lay at 88, 84, and 66% of Lo. Muscle cross-sectional area was 40% greater in costal than in crural diaphragms. Considering in situ lengths, cross-sectional areas, and in vitro length-tension characteristics at FRC, the costal diaphragm could exert 60% more force than the crural diaphragm.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4287-4287
Author(s):  
Hyunjun Kim ◽  
Danuta Jadwiga Jarocha ◽  
Ian Johnston ◽  
Hyunsook Ahn ◽  
Deborah L French ◽  
...  

Abstract The questions of whether thrombopoiesis - the release of platelets from megakaryocytes - occurs both as megakaryocytes emerge from the intramedullar space or occurs as well in the pulmonary vascular bed remains unanswered. Studies by Lefrançais E, et al, (Nature, 2017) demonstrated by in situ microcopy that perhaps 50% of all platelet release in mice occurs from megakaryocytes released from the marrow and traveled to the lungs where they undergo thrombopoiesis over a 20- to 60-minute time-period. We examined whether CD34+-derived human megakaryocytes infused into immunocompromized NSG mice would also shed platelets in the lungs in a similar fashion. We differentiated CD34+-derived hematopoietic stem-progenitors for 12 days in culture using conditions previously described (Wang Y, et al., Blood 2015). We found that unlike platelet-like-particle (PLP) formation in in vitro cultures of CD34+ hematopoietic progenitor cell (HPC)-derived (CD34+) megakaryocytes, which undergo asynchronous shedding of the PLPs, that over 95% of infused CD34+ megakaryocytes shed their platelets within the first 40 minutes much as has been observed for endogenous murine megakaryocytes. The average number of cytoplasmic extensions per megakaryocytes was ~2.7, again very similar to what was seen with endogenous murine megakaryocytes. In contrast, CD34+ cells grown in culture into megakaryocytes for a shorter period of time of only 7 days, poorly shed any cytoplasmic fragments. We also studied human megakaryocytes grown from immortalized megakaryocyte progenitor cell lines (imMKCLs) from induced pluripotent stem cells (iPSCs) generated by the Eto laboratory and kindly provided by Dr. Koji Eto, Kyoto University). These cells were grown and differentiated into terminal megakaryocytes as described (Nakamura S, Cell Stem Cell, 2014) for 4 days in culture. These cells have been proposed to be useful for large-scale preparation of PLPs in vitro for clinical use in place of donor-derived platelets. The resultant infused human imMKCL-derived megakaryocytes also synchronously shed platelets, but only 50% of the infused cells shed their cytoplasm in contrast to &gt;95% of CD34+ megakaryocytes. Moreover, cytoplasmic extensions were decreased to an average of ~1.1 per megakaryocyte. We had proposed that in vitro-generated megakaryocytes might be directly infused into patients in place of further manipulating the megakaryocytes to release functional platelets in vitro using a bioreactor. However, such megakaryocytes will likely be contaminated with a higher level of HPCs than anticipated from in vitro-prepared platelets, and concern exists that they may lead to unacceptable graft versus host complications. We, therefore, examined whether irradiating megakaryocytes as one strategy to eliminate this concern results in megakaryocytes that are still functional and found that megakaryocytes irradiated with up to 25 Gy retain platelet yield per infused megakaryocytes with the platelets having the same half-life. If irradiated and kept in culture, these megakaryocytes begin to shed platelets and undergo apoptosis notably by 24 hours. We also examined whether the pulmonary bed differs from other vascular beds, and infused CD34+ megakaryocytes both intravenously and intra-arterially in parallel studies and found that following intra-arterial infusion, megakaryocytes were mostly entrapped in various organs, but shed few platelets. Thus, our studies suggest that the pulmonary bed is unique for platelet shedding from entrapped megakaryocytes. Whether this is due to the structural organization of the pulmonary beds, its endothelial lining, its reverse exchange in oxygen, carbon dioxide and pH from other capillary beds or the mechanical forces of inhalation and exhalation that expand and contract the capillary cross-sectional area needs to be examined. Our studies show that infused human megakaryocytes synchronously release platelets over a 40-minute window and can do so even after being irradiated and that this occurs specifically in the lungs not only has potential clinical application, but also raises biological questions about what determines thrombopoiesis-readiness and what are the features of the pulmonary bed that allows this synchronous release. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


1987 ◽  
Vol 21 (4) ◽  
pp. 297-309 ◽  
Author(s):  
Nieuw Amerongen ◽  
C.H. Oderkerk ◽  
A.A. Driessen
Keyword(s):  

2001 ◽  
Vol 85 (3) ◽  
pp. 1027-1032 ◽  
Author(s):  
Bartley R. Frueh ◽  
Paul Gregorevic ◽  
David A. Williams ◽  
Gordon S. Lynch

Extraocular muscles are characterized by their faster rates of contraction and their higher resistance to fatigue relative to limb skeletal muscles. Another often reported characteristic of extraocular muscles is that they generate lower specific forces ( sP o, force per muscle cross-sectional area, kN/m2) than limb skeletal muscles. To investigate this perplexing issue, the isometric contractile properties of the levator palpebrae superioris (levator) and superior rectus muscles of the rat were examined in situ with nerve and blood supply intact. The extraocular muscles were attached to a force transducer, and the cranial nerves exposed for direct stimulation. After determination of optimal muscle length ( L o) and stimulation voltage, a full frequency-force relationship was established for each muscle. Maximum isometric tetanic force ( P o) for the levator and superior rectus muscles was 177 ± 13 and 280 ± 10 mN (mean ± SE), respectively. For the calculation of specific force, a number of rat levator and superior rectus muscles were stored in a 20% nitric acid-based solution to isolate individual muscle fibers. Muscle fiber lengths ( L f) were expressed as a percentage of overall muscle length, allowing a mean L f to L o ratio to be used in the estimation of muscle cross-sectional area. Mean L f: L owas determined to be 0.38 for the levator muscle and 0.45 for the superior rectus muscle. The sP o for the rat levator and superior rectus muscles measured in situ was 275 and 280 kN/m2, respectively. These values are within the range of sP o values commonly reported for rat skeletal muscles. Furthermore P o and sP o for the rat levator and superior rectus muscles measured in situ were significantly higher ( P < 0.001) than P oand sP o for these muscles measured in vitro. The results indicate that the force output of intact extraocular muscles differs greatly depending on the mode of testing. Although in vitro evaluation of extraocular muscle contractility will continue to reveal important information about this group of understudied muscles, the lower sP o values of these preparations should be recognized as being significantly less than their true potential. We conclude that extraocular muscles are not intrinsically weaker than skeletal muscles.


Sign in / Sign up

Export Citation Format

Share Document