scholarly journals Effect of starch on the cariogenic potential of sucrose

2005 ◽  
Vol 94 (1) ◽  
pp. 44-50 ◽  
Author(s):  
Cecilia C. C. Ribeiro ◽  
Cínthia P. M. Tabchoury ◽  
Altair A. Del Bel Cury ◽  
Livia M. A. Tenuta ◽  
Pedro L. Rosalen ◽  
...  

Sincein vitroand animal studies suggest that the combination of starch with sucrose may be more cariogenic than sucrose alone, the study assessedin situthe effects of this association appliedin vitroon the acidogenicity, biochemical and microbiological composition of dental biofilm, as well as on enamel demineralization. During two phases of 14 d each, fifteen volunteers wore palatal appliances containing blocks of human deciduous enamel, which were extra-orally submitted to four groups of treatments: water (negative control, T1); 2 % starch (T2); 10 % sucrose (T3); and 2 % starch+10 % sucrose (T4). The solutions were dripped onto the blocks eight times per day. The biofilm formed on the blocks was analysed with regard to amylase activity, acidogenicity, and biochemical and microbiological composition. Demineralization was determined on enamel by cross-sectional microhardness. The greatest mineral loss was observed for the association starch+sucrose (P<0·05). Also, this association resulted in the highest lactobacillus count in the biofilm formed (P<0·05). In conclusion, the findings suggest that a small amount of added starch increases the cariogenic potential of sucrose.

1993 ◽  
Vol 4 (3) ◽  
pp. 357-362 ◽  
Author(s):  
J.D.B. Featherstone ◽  
J.M. Behrman ◽  
J.E. Bell

The aim of the present study was to use an in vitro enamel demineralization model (1) to confirm that whole saliva pretreatment conferred acid resistance to dental enamel and (2) to determine whether this phenomenon was attributable to specific salivary proteins, minerals, lipids, or some combination of these. Crowns of human teeth, each with one exposed window, were prepared in groups of ten. They were each pretreated by immersion individually in 4 ml of either (1) clarified whole saliva for 18, 72, or 168 h, (2) dialyzed saliva (3500 MWCO membrane), (3) the "flow-through" fraction from a DEAE separation of whole saliva (neutral and basic proteins), (4) the "eluted" fraction of a DEAE separation of whole saliva (anionic proteins), or (5) a combination of salivary lipids and the DEAE "flow-through" fraction of whole saliva (neutral and basic proteins). Control groups were group 6 with no pretreatment, group 7 pretreated for 168 h in a borate buffer (5 mmol/1), and group 8 pretreated in a mineral solution containing calcium (0.7 mmol/1) and phosphate (2.6 mmol/1). The crowns were then demineralized for 7 d in vitro (0.1 mol/1 acetate, 1 mmol/l Ca and phosphate, pH 5.0) to produce artificial caries-like lesions. Lesions were assessed by cross-sectional microhardness profiles, and mineral loss (AZ, μm x vol% mineral) calculated. Mineral loss (AZ) values decreased linearly with the square root of time of pretreatment by whole saliva, confirming a time-dependent protective effect of salivary pellicle against demineralization of enamel. Pretreatments (168 h) by whole saliva (group 1), dialyzed saliva (group 2), and lipid/'flow through" proteins (group 5) gave equivalent protection (approximately 55%). However, no protection was provided by DEAE-separated protein fractions (no lipid present) or by the mineral alone. The protection of surface enamel against demineralization appears to be given by a combination of specifically adsorbed salivary lipids and proteins.


2015 ◽  
Vol 49 (4) ◽  
pp. 394-400 ◽  
Author(s):  
Eliana M. Takeshita ◽  
Marcelle Danelon ◽  
Luciene P. Castro ◽  
Kikue T. Sassaki ◽  
Alberto C.B. Delbem

Objective: The aim of the present study was to evaluate in situ whether a toothpaste with low fluoride associated with sodium trimetaphosphate (TMP) would provide similar effect to that of a 1,100 ppm F toothpaste. Design: This crossover double-blind study consisted of 4 phases (14 days each), during which 10 volunteers wore oral appliances containing 4 enamel bovine blocks. The cariogenic challenge was performed by the application of a 20% sucrose solution (6×/day). The toothpaste treatments (2×/day) were: placebo, 500 ppm F, 500 ppm F plus 1% TMP, and 1,100 ppm F. At the end, enamel mineral loss and biofilm composition were analyzed. Results: The toothpaste with 500 ppm F plus 1% TMP showed the lowest mineral loss (p < 0.05). Regarding the fluoride and calcium concentrations in the enamel and in the biofilm, there were no significant differences between 500 ppm F plus 1% TMP, and 1,100 ppm F toothpastes (p > 0.569), but they were significantly different when compared to toothpaste with 500 ppm F (p < 0.050). Conclusion: The addition of 1% TMP to a low-fluoride toothpaste reduces enamel demineralization in situ similar to a 1,100 ppm F toothpaste.


2016 ◽  
Vol 50 (1) ◽  
pp. 32-39 ◽  
Author(s):  
Yang Yang ◽  
Xueping Lv ◽  
Wenyuan Shi ◽  
Xuedong Zhou ◽  
Jiyao Li ◽  
...  

The biomimetic peptide 8DSS has shown beneficial effects in promoting remineralization of demineralized enamel in vitro. Here we examined the ability of 8DSS alone and in combination with fluoride to inhibit enamel demineralization during pH-cycling mimicking intraoral conditions. Enamel blocks were subjected to 9 days of pH-cycling in the presence of 1,000 ppm NaF (positive control), distilled-deionized water (DDW; negative control), 25 μM 8DSS alone, 25 μM 8DSS with 500 ppm NaF (8DSS-FL) or 25 μM 8DSS with 1,000 ppm NaF (8DSS-FH) twice daily for 1 min each time. The blocks were analyzed in terms of surface microhardness (SMH), fluoride uptake and mineral content. The 8DSS-treated blocks showed significantly lower mineral loss, shallower lesions and higher SMH than the DDW-treated blocks. No significant differences were observed between the blocks treated with 8DSS alone or fluoride alone. The blocks treated with 8DSS alone or DDW showed similar amounts of fluoride uptake, which was the lowest of all the treatment groups. The blocks treated with 8DSS-FL or 8DSS-FH did not differ significantly, and both groups showed significantly greater SMH and fluoride uptake as well as significantly lower mineral loss and shallower lesions than the NaF-treated blocks. Mineral content was significantly higher in the 8DSS-treated blocks than in the DDW-treated blocks from the surface layer (10 µm) to the lesion depth (110 µm), and it was significantly higher in the blocks treated with 8DSS-FL or 8DSS-FH than in the NaF-treated blocks from 10 to 90 µm. These findings illustrate the potential of 8DSS for inhibiting enamel demineralization and for enhancing the anticaries effect of NaF.


2003 ◽  
Vol 17 (3) ◽  
pp. 241-246 ◽  
Author(s):  
Rosane Maria Orth Argenta ◽  
Cinthia Pereira Machado Tabchoury ◽  
Jaime Aparecido Cury

Since in vitro pH-cycling models are widely used to study dental caries, they should allow evaluations of fluoride effect on early stages of caries development. Therefore, acid etching on enamel surface must be avoided, enabling surface microhardness (SMH) analysis. In the present study, the pH-cycling model originally described by Featherstone et al.9 (1986) was modified to preserve the enamel surface and to produce early carious lesions that could be evaluated using SMH and cross-sectional microhardness (CSMH) measurements. In order to validate this modified model, a dose-response evaluation with fluoride was made. Human enamel blocks with known SMH were submitted to such regimen with the following treatments: distilled deionized water (DDW; control) and solutions containing 70, 140 and 280 ppm F. Data from %SMH change and deltaZ (mineral loss) showed a statistically significant negative correlation between F concentration in treatment solutions and mineral loss. In conclusion, the modified pH-cycling model allowed the evaluation of changes on the outermost enamel layer during caries development, and a dose-response effect of fluoride reducing enamel demineralization was observed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 745
Author(s):  
Enrico Bergamaschi ◽  
Giacomo Garzaro ◽  
Georgia Wilson Jones ◽  
Martina Buglisi ◽  
Michele Caniglia ◽  
...  

Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) are erroneously considered as singular material entities. Instead, they should be regarded as a heterogeneous class of materials bearing different properties eliciting peculiar biological outcomes both in vitro and in vivo. Given the pace at which the industrial production of CNTs/CNFs is increasing, it is becoming of utmost importance to acquire comprehensive knowledge regarding their biological activity and their hazardous effects in humans. Animal studies carried out by inhalation showed that some CNTs/CNFs species can cause deleterious effects such as inflammation and lung tissue remodeling. Their physico-chemical properties, biological behavior and biopersistence make them similar to asbestos fibers. Human studies suggest some mild effects in workers handling CNT/CNF. However, owing to their cross-sectional design, researchers have been as yet unable to firmly demonstrate a causal relationship between such an exposure and the observed effects. Estimation of acceptable exposure levels should warrant a proper risk management. The aim of this review is to challenge the conception of CNTs/CNFs as a single, unified material entity and prompt the establishment of standardized hazard and exposure assessment methodologies able to properly feeding risk assessment and management frameworks.


2007 ◽  
Vol 18 (3) ◽  
pp. 185-191 ◽  
Author(s):  
Rodrigo Alex Arthur ◽  
Cínthia Pereira Machado Tabchoury ◽  
Renata de Oliveira Mattos-Graner ◽  
Altair A. Del Bel Cury ◽  
Adriana Franco Paes Leme ◽  
...  

In situ dental biofilm composition under sugar exposure is well known, but sugar effect on the genotypic diversity of S. mutans in dental biofilm has not been explored. This study evaluated S. mutans genotypic diversity in dental biofilm formed in situ under frequent exposure to sucrose and its monosaccharide constituents (glucose and fructose). Saliva of 7 volunteers was collected for isolation of S. mutans and the same volunteers wore intraoral palatal appliances, containing enamel slabs, which were submitted to the following treatments: distilled and deionized water (negative control), 10% glucose + 10% fructose (fermentable carbohydrates) solution or 20% sucrose (fermentable and EPS inductor) solution, 8x/day. After 3, 7 and 14 days, the biofilms were colleted and S. mutans colonies were isolated. Arbitrarily primed polymerase chain reaction (AP-PCR) of S. mutans showed that salivary genotypes were also detected in almost all biofilm samples, independently of the treatment, and seemed to reflect those genotypes present at higher proportion in biofilms. In addition to the salivary genotypes, others were found in biofilms but in lower proportions and were distinct among treatment. The data suggest that the in situ model seems to be useful to evaluate genotypic diversity of S. mutans, but, under the tested conditions, it was not possible to clearly show that specific genotypes were selected in the biofilm due to the stress induced by sucrose metabolism or simple fermentation of its monosaccharides.


1992 ◽  
Vol 71 (3_suppl) ◽  
pp. 804-810 ◽  
Author(s):  
J.D.B. Featherstone ◽  
D.T. Zero

In situ models to assess the ability of oral care products or food components to enhance remineralization and/or inhibit demineralization of tooth enamel or roots must be very carefully designed to minimize the confounding effects of the many variables involved. Controlling these variables as closely as possible is essential if meaningful answers are to be obtained from the models. We have developed an in situ model which combines the experience of several groups. Detailed screening of subjects is essential. Selection criteria should include good general health, good dental health, mandibular partial denture, at least eight natural teeth, no active caries lesions, known fluoride history, normal salivary function, and no medications that affect salivary function. Each subject carries a sound enamel slab and an enamel slab with a pre-formed caries-like lesion (demineralized in vitro) in his/her denture on each side of the mouth for test periods of two or four weeks. The demineralization challenge is controlled by extra-oral immersion of the appliances in sucrose daily. Daily product exposure or daily food component exposure is used as desired. Compliance indicators and a diet diary are included. Whole saliva flow rate (unstimulated), plaque acidogenicity, and salivary fluoride are monitored during the test periods. At the end of the test period, the test slabs are assessed for mineral change, after being sectioned, by means of cross-sectional microhardness or microradiography. The mineral loss or gain (ΔM, μm × vol%), compared with adjacent control sections retained in the lab, is calculated as change in ΔZ (μm × vol%), namely, ΔM = ΔZTEST - ΔZ.CONTROL. In this model, demineralization occurs in sound enamel and in the pre-formed lesions in the absence of fluoride or other protective agents. The model has the potential to be able to differentiate among fluoride delivery systems and to assess the caries-protective effects of agents other than fluoride by use of small groups of subjects.


2021 ◽  
Author(s):  
Mauro Antonio Dall Agnol ◽  
Carla Battiston ◽  
Livia Maria Andalo Tenuta ◽  
Jaime Aparecido Cury

Although fluoride varnish (FV) and acidulated phosphate fluoride gel (APF-gel) are considered clinically effective to reduce caries, in vitro studies have shown that FV reacts slowly with enamel because most NaF present in the formulation is not solubilized in the FV. Therefore, we conducted a clinical study to evaluate if the time that FV remains on dental surfaces could overcome its slower chemical reactivity when compared with APF-gel. Sixty-eight volunteers were randomly allocated into four groups: Negative control (Control, no treatment), APF -gel application (1.23% F applied for 4 min), and FV application (Duraphat®, 2.26 % F) for 4 h (FV-4h) or 24 h (FV-24h). To evaluate fluoride formed and retained on enamel, acid biopsies were made on the buccal surfaces of the maxillary central incisors before, at the end of the application of fluoride products (immediately after gel application, or after 4 or 24 h of varnish application) and after 7 and 28 days. Fluoride concentration in dental biofilm was also analyzed before and up to 28 days after initial application. The data were analyzed by 2-way ANOVA, considering treatment and time as factors. The APF-gel and FV-24h groups formed greater fluoride concentration on enamel than the FV-4h and the control group at the end of application (p=0.0001), with no difference from each other (p=0.99). The groups did not differ regarding fluoride in biofilm, fluid (p=0.73) and solids (0.40). In conclusion, fluoride varnish needs to remain in contact with the teeth for prolonged times (>4 h) to reach the same reactivity obtained by a 4-min application of APF-gel.


2016 ◽  
Vol 50 (2) ◽  
pp. 141-150 ◽  
Author(s):  
Richard J. Wierichs ◽  
Julian Lausch ◽  
Hendrik Meyer-Lueckel ◽  
Marcella Esteves-Oliveira

Objectives: The aim of this double-blinded, randomized, cross-over in situ study was to evaluate the re- and demineralization characteristics of sound enamel as well as lowly and highly demineralized caries-like enamel lesions after the application of different fluoride compounds. Methods: In each of three experimental legs of 4 weeks, 21 participants wore intraoral mandibular appliances containing 4 bovine enamel specimens (2 lowly and 2 highly demineralized). Each specimen included one sound enamel and either one lowly demineralized (7 days, pH 4.95) or one highly demineralized (21 days, pH 4.95) lesion, and was positioned 1 mm below the acrylic under a plastic mesh. The three randomly allocated treatments (application only) included the following dentifrices: (1) 1,100 ppm F as NaF, (2) 1,100 ppm F as SnF2 and (3) 0 ppm F (fluoride-free) as negative control. Differences in integrated mineral loss (ΔΔZ) and lesion depth (ΔLD) were calculated between values before and after the in situ period using transversal microradiography. Results: Of the 21 participants, 6 did not complete the study and 2 were excluded due to protocol violation. Irrespectively of the treatment, higher baseline mineral loss and lesion depth led to a less pronounced change in mineral loss and lesion depth. Except for ΔΔZ of the dentifrice with 0 ppm F, sound surfaces showed significantly higher ΔΔZ and ΔLD values compared with lowly and highly demineralized lesions (p < 0.05, t test). Conclusion: Re- and demineralization characteristics of enamel depended directly on baseline mineral loss and lesion depth. Treatment groups should therefore be well balanced with respect to baseline mineral loss and lesion depth.


2006 ◽  
Vol 14 (2) ◽  
pp. 88-92 ◽  
Author(s):  
Alberto Carlos Botazzo Delbem ◽  
Maurício Bergamaschi ◽  
Kikue Takebayashi Sassaki ◽  
Robson Frederico Cunha

OBJECTIVE: In the present investigation, the anticariogenic effect of fluoride released by two products commonly applied in infants was evaluated. METHODS: Bovine sound enamel blocks were randomly allocated to each one of the treatment groups: control (C), varnish (V) and diamine silver fluoride solution (D). The blocks were submitted to pH cycles in an oven at 37ºC. Next, surface and cross-sectional microhardness were assessed to calculate the percentage loss of surface microhardness (%SML) and the mineral loss (deltaZ). The fluoride present in enamel was also determined. RESULTS: F/Px10-3 (ANOVA, p<0.05) in the 1st layer of enamel before pH-cycling were (C, V and D): 1.61ª; 21.59b and 3.98c. The %SMH (Kruskal-Wallis, p<0.05) were: -64.0ª, -45.2b and -53.1c. %deltaZ values (ANOVA, p<0.05) were: -18.7ª, -7.7b and -17.3ª. CONCLUSION: The data suggested that the fluoride released by varnish showed greater interaction with sound enamel and provided less mineral loss when compared with silver diamine solution.


Sign in / Sign up

Export Citation Format

Share Document