The Influence of Growth Hormone on Cell Proliferation in Odontogenic Epithelia by Bromodeoxyuridine Immunocytochemistry and Morphometry in the Lewis Dwarf Rat

1992 ◽  
Vol 71 (11) ◽  
pp. 1807-1811 ◽  
Author(s):  
W.G. Young ◽  
C.Z. Zhang ◽  
H. Li ◽  
P. Osborne ◽  
M.J. Waters

For investigation of how growth hormone affects tooth development, bromodeoxyuridine immunocytochemistry and morphometry were used for the study of cell proliferation in odontogenic epithelial cell layers. The number of cells in the S phase, as revealed by this technique, and in mitosis, were counted in Bouin's-perfused and paraffin-embedded undecalcified maxillary incisor enamel organs of normal rats, in growth-hormone-deficient dwarf rats, and in dwarf rats treated with growth hormone (66 μg/100 g body wt) twice daily for six days. Significantly fewer labeled nuclei, unlabeled nuclei, and total nuclei of various odontogenic epithelia were found in dwarf rats, but in dwarf rats treated with growth hormone, numbers of labeled nuclei equivalent to normal were found in the internal enamel epithelium, stratum intermedium, and Hertwig root sheath. Moreover, the mitotic index for pre-ameloblasts was 1.64 in normal rats, 0.92 for dwarf rats, and 1.66 for growth-hormone-treated dwarf rats (SD, 0.10). Other parameters-such as the labeling index and the ratio of positive to negative nuclei-were similarly related to GH status. Thus, growth hormone may play a role in the proliferation of the odontogenic epithelia in the rat.

2010 ◽  
Vol 22 (1) ◽  
pp. 374
Author(s):  
S. Waghmare ◽  
B. Mir

Gene targeting in primary somatic cells is inefficient compared with embryonic stem cells. This is because of a slow rate of cell proliferation, fewer cells in S-phase at a given time point under normal culture conditions, and low rate of homologous recombination. Homologous recombination occurs mainly in late S-phase and increase in gene targeting efficiency has been reported in S-phase synchronized cells in bovine and rhesus macaque fetal fibroblasts. In this study we tested several growth factors: platelet-derived growth factor (PDGF), tumor necrosis factor a (TNFα), epidermal growth factor (EGF), fibroblast growth factor (FGF), transforming growth factor β1 (TGFβ1), insulin-like growth factor 1 (ILGF-1) and insulin-like growth factor II (ILGF-II) individually and in various combinations to see the effect on cell proliferation rate. Each experimental set consisted of 3 replicates. TGFβ1-, ILGF1-, ILGFII-, and FGF-treated cells grew very slowly compared with untreated cells. However, a combination of 3 growth factors: PDGF (15 ng mL-1), EGF (50 ng mL-1) and TNFa (100 pg mL-1), herein referred to as the cocktail, accelerated cell proliferation rate and reduced cell cycle length on average from 24.5 ± 0.2 to 20.4 ± 0.5 h with no significant change in number of cells in S-phase. Further, cells grown in the presence of the cocktail showed changes in morphology. The cells became spindle-shaped and occupied less surface area per cell compared with untreated cells. Importantly, cocktail-treated cells maintained a normal karyotype without any chromosomal abnormality. Thymidine has been used successfully to block various cell types in S-phase but it failed to synchronize these cells in S-phase in the concentration range of 2 to 10 mM for 24 to 48 h. However, serum starvation (0.2% fetal bovine serum) for 48 h blocked the cell proliferation rate effectively and synchronized cells in G0 phase (80-82% cells). After releasing from the block, cells were grown in the absence or presence of cocktail and cell cycle analysis was done at different time points by flow cytometry. Each time point was repeated 3 times. We observed the maximum number of cells in S-phase at 22 to 23 h (61.33% ± 7.77 in cocktail-treated cells v. 41.7% ± 3.28 in untreated cells). In summary, the cocktail-treated cells showed changes in cell morphology, higher proliferation rate, reduction in cell cycle length by 16.7%, and maximum percentage of cells in S-phase following serum starvation but maintained normal karyotypes. This high proliferation rate, reduction in cell cycle length, and maximum number of cells in S-phase should be very helpful in increasing the efficiency of gene-targeting in pig fetal fibroblasts.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4290-4290
Author(s):  
Ina Fabian ◽  
Debby Haite ◽  
Avital Levitov ◽  
Drora Halperin ◽  
Itamar Shalit

Abstract We previously reported that the fluoroquinolone moxifloxacin (MXF) inhibits NF-kB, mitogen-activated protein kinase activation and the synthesis of proinflammatory cytokines in activated human monocytic cells (AAC48:1974,2004). Since MXF acts on topoisomerase II (Topo II) in mammalian cells, we investigated its effect in combination with another Topo II inhibitor, VP-16, on cell proliferation (by the MTT method), cell cycle, caspase-3 activity and proinflammatory cytokine release in THP-1 and Jurkat cells. THP-1 cells were incubated for 24 h with 0.5–3 μg/ml VP-16 in the presence or absence of 5–20 μg/ml MXF. VP-16 induced a dose dependent decrease in cell proliferation. An additional 2.5-and 1.6-fold decrease in cell proliferation was observed upon incubation of the cells with 0.5 or 1 μg/ml VP-16 and 20 μg/ml MXF, respectively (up to 69% inhibition). To further elucidate the mechanism of the antiproliferative activity of MXF, its effect on cell cycle progression was investigated. In control cultures 1%, 45%,18% and 36% of cells were in G0, G1, S and G2/M phases at 24 h, respectively. In contrast, in cultures treated with 1 μg/ml VP-16 and VP-16+ 20 μg/ml MXF, the number of cells in G1 decreased to 5.4 and 6.5%, respectively, while the number of cells in S phase increased to 25.5 and 42%, respectively and the number of cells in G2/M cells increased to 60 and 44%, respectively. These data provide evidence for S-G2/M cell cycle arrest induced by VP-16 and that addition of MXF shifted the S-G2/M arrest more towards the S phase. Since the antiproliferative effects of MXF could also be attributed to apoptotic cell death in addition to cell cycle arrest, we investigated the effect of the drugs on apoptosis. Using the fluorogenic assay for caspse-3 activity, we show that incubation of THP-1 cells for 6 h with 1.5 μg/ml VP-16 resulted in 630±120 unit/50μg protein of caspase-3 activity while the combination of 1.5 μg/ml VP-16 and 20 μg/ml MXF enhanced caspase-3 activity up to 1700±340 units/50μg protein (vs.233±107 in control cells), indicating that MXF synergises with VP-16 in activation of caspase-3. In Jurkat cells, the addition of 0.5 or 1 μg/ml VP-16, did not affect cell proliferation while in the presence of 20 μg/ml MXF and 1 μg/ml VP-16 there was a 62% decrease in cell proliferation (p<0.05). Exposure of Jurkat cells to 3 μg/ml VP-16 alone resulted in 504±114 units/50μg protein of caspase-3 activity and the addition of 20μg/ml MXF enhanced caspase-3 activity up to 1676± 259 units/50μg protein (vs 226±113 units/50μg protein in control cells). We further examined pro-inflammatory cytokine secretion upon stimulation of THP-1 cells with VP-16, MXF or their combination. VP-16 alone at 3 μg/ml increased IL-8 and TNF-α secretion from THP-1 cells by 2.5 and 1.8-fold respectively. Addition of MXF (5–20 μg/ml) inhibited the two cytokines secretion by 72–77% and 58–72%, respectively. The above combined data indicate that MXF, at clinically attainable concentrations, demonstrates pronounced synergistic effect with VP-16 as an anti-proliferative agent mainly by enhancing caspase-3 activity and apoptosis. At the same time MXF inhibits the pro-inflammatory effects conferred by VP-16 in the tumor cells studied. The clinical significance of the above anti-proliferative and anti-inflammatory effects of MXF in combination with VP-16 should be further investigated in animal models.


2021 ◽  
Author(s):  
Liping Pang ◽  
Hua Tian ◽  
Xuejun Gao ◽  
Weiping Wang ◽  
Xiaoyan Wang ◽  
...  

KMT2D, as one of the key histone methyltransferases responsible for histone 3 lysine 4 methylation (H3K4me), has been proved to be the main pathogenic gene of Kabuki syndrome disease. Kabuki patients with KMT2D mutation frequently present various dental abnormalities, including abnormal tooth number and crown morphology. However, the exact function of KMT2D in tooth development remains unclear. In this report, we systematically elucidate the expression pattern of KMT2D in early tooth development and outline the molecular mechanism of KMT2D in dental epithelial cell line. KMT2D and H3K4me mainly expressed in enamel organ and Kmt2d knockdown led to the reduction of cell proliferation activity and cell cycling activity in dental epithelial cell line (LS8). RNA-seq and KEGG enrichment analysis screened out several important pathways that affected by Kmt2d knockdown including Wnt signaling. Consistently, Top/Fop assay confirmed the reduction of Wnt signaling activity in Kmt2d knockdown cells. Nuclear translocation of β-catenin was significantly reduced by Kmt2d knockdown, while lithium chloride (LiCl) partially reversed this phenomenon. Moreover, LiCl partially reversed the decrease of cell proliferation activity and G1 arrest, and the downregulation of Wnt-related genes in Kmt2d knockdown cells. In summary, this study uncovered a pivotal role of histone methyltransferase KMT2D in dental epithelium proliferation and cell cycle homeostasis partially through regulating Wnt/β-catenin signaling. The findings are important for understanding the role of KMT2D and histone methylation in tooth development.


1999 ◽  
Vol 277 (6) ◽  
pp. L1172-L1178 ◽  
Author(s):  
Raymond C. Rancourt ◽  
Rhonda J. Staversky ◽  
Peter C. Keng ◽  
Michael A. O'reilly

High concentrations of O2 inhibit epithelial cell proliferation that resumes on recovery in room air. To determine whether growth arrest is mediated by transforming growth factor-β (TGF-β), changes in cell proliferation during exposure to hyperoxia were assessed in the mink lung epithelial cell line Mv1Lu and the clonal variant R1B, which is deficient for the type I TGF-β receptor. Mv1Lu cells treated with TGF-β accumulated in the G1 phase of the cell cycle as determined by propidium iodide staining, whereas proliferation of R1B cells was unaffected by TGF-β. In contrast, hyperoxia inhibited proliferation of both cell lines within 24 h of exposure through an accumulation in the S phase. Mv1Lu cells treated with TGF-β and exposed to hyperoxia accumulated in the G1 phase, suggesting that TGF-β can inhibit the S phase accumulation observed with hyperoxia alone. Cyclin A was detected in cultures exposed to room air or growth arrested by hyperoxia while decreasing in cells growth arrested in the G1 phase by TGF-β. Finally, hyperoxia failed to activate a TGF-β-dependent transcriptional reporter in both Mv1Lu and R1B cells. These findings reveal that simple growth arrest by hyperoxia involves a defect in S phase progression that is independent of TGF-β signaling.


2004 ◽  
Vol 127 (2) ◽  
pp. 570-581 ◽  
Author(s):  
Megan E. Miller ◽  
Carmen Z. Michaylira ◽  
James G. Simmons ◽  
Denise M. Ney ◽  
Elizabeth M. Dahly ◽  
...  

1991 ◽  
Vol 11 (3) ◽  
pp. 1185-1194 ◽  
Author(s):  
P H Howe ◽  
G Draetta ◽  
E B Leof

Transforming growth factor beta 1 (TGF beta 1) is a potent inhibitor of epithelial cell proliferation. We present data which indicate that epithelial cell proliferation is inhibited when TGF beta 1 is added throughout the prereplicative G1 phase. Cultures become reversibly blocked in late G1 at the G1/S-phase boundary. The inhibitory effects of TGF beta 1 on cell growth occur in the presence of the RNA synthesis inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole. Associated with this inhibitory effect is a decrease in the phosphorylation and histone H1 kinase activity of the p34cdc2 protein kinase. These data suggest that TGF beta 1 growth inhibition in epithelial cells involves the regulation of p34cdc2 activity at the G1/S transition.


Reproduction ◽  
2003 ◽  
pp. 327-336 ◽  
Author(s):  
KE Markham ◽  
PL Kaye

The role of growth hormone (GH) in embryonic growth is controversial, yet preimplantation embryos express GH, insulin-like growth factor I (IGF-I) and their receptors. In this study, addition of bovine GH doubled the proportion of two-cell embryos forming blastocysts and increased by about 25% the number of cells in those blastocysts with a concentration-response curve showing maximal activity at 1 pg bovine GH ml(-1), with decreasing activity at higher and lower concentrations. GH increased the number of cells in the trophectoderm by 25%, but did not affect the inner cell mass of blastocysts. Inhibition of cell proliferation by anti-GH antiserum indicated that GH is a potent autocrine or paracrine regulator of the number of trophectoderm cells in vivo. Type 1 IGF receptors (IGF1R) were localized to cytoplasmic vesicles and plasma membrane in the apical domains of uncompacted and compacted eight-cell embryos, but were predominantly apparent in cytoplasmic vesicles of the trophectoderm cells of the blastocyst, similar to GH receptors. Studies using alpha IR3 antiserum which blocks ligand activation of IGF1R, showed that IGF1R participate in the autocrine or paracrine regulation of the number of cells in the inner cell mass by an endogenous IGF-I-IGF1R pathway. However, alpha IR3 did not affect GH stimulation of the number of trophectoderm cells. Therefore, GH does not use secondary actions via embryonic IGF-I to modify the number of blastocyst cells. This result indicates that GH and IGF-I act independently. GH may selectively regulate the number of trophectoderm cells and thus implantation and placental growth. Embryonic GH may act in concert with IGF-I, which stimulates proliferation in the inner cell mass, to optimize blastocyst development.


Sign in / Sign up

Export Citation Format

Share Document