scholarly journals Expression of the Cystathionine β Synthase (CBS) Gene During Mouse Development and Immunolocalization in Adult Brain

2003 ◽  
Vol 51 (3) ◽  
pp. 363-371 ◽  
Author(s):  
Karine Robert ◽  
François Vialard ◽  
Eric Thiery ◽  
Kiyoko Toyama ◽  
Pierre-Marie Sinet ◽  
...  

Hyperhomocysteinemia, caused by a lack of cystathionine β synthase (CBS), leads to elevated plasma concentrations of homocysteine. This is a common risk factor for atherosclerosis, stroke, and possibly neurodegenerative diseases. However, the mechanisms that link hyperhomocysteinemia due to CBS deficiency to these diseases are still unknown. Early biochemical studies describe developmental and adult patterns of transsulfuration and CBS expression in a variety of species. However, there is incomplete knowledge about the regional and cellular expression pattern of CBS, notably in the brain. To complete the previous data, we used in situ hybridization and Northern blotting to characterize the spatial and temporal patterns of Cbs gene expression during mouse development. In the early stages of development, the Cbs gene was expressed only in the liver and in the skeletal, cardiac, and nervous systems. The expression declined in the nervous system in the late embryonic stages, whereas it increased in the brain after birth, peaking during cerebellar development. In the adult brain, expression was strongest in the Purkinje cell layer and in the hippocampus. Immunohistochemical analyses showed that the CBS protein was localized in most areas of the brain but predominantly in the cell bodies and neuronal processes of Purkinje cells and Ammon's horn neurons.

Author(s):  
Sebastian Jessberger ◽  
Armin Curt ◽  
Roger A. Barker

A number of diseases of the brain and spinal cord are associated with substantial neural cell death and/or disruption of correct and functional neural networks. In the past, a variety of therapeutic strategies to rescue these systems have been proposed along with agents to induce functional plasticity within the remaining central nervous system (CNS) structures. In the case of injury or neurodegenerative disease these approaches have only met with limited success, indicating the need for novel approaches to treat diseases of the adult CNS. Recently, the idea of recruiting endogenous or transplanting stem cells to replace lost structures within the adult brain or spinal cord has gained significant attention, along with in situ reprogramming, and opened up novel therapeutic avenues in the context of regenerative medicine. Here we review recent advances in our understanding of how endogenous stem cells may be a part of pathological processes in certain neuropsychiatric diseases and summarize recent clinical and preclinical data suggesting that stem cell-based therapies hold great promise as a future treatment option in a number of diseases disrupting the proper function of the adult CNS.


2004 ◽  
Vol 24 (1) ◽  
pp. 270-279 ◽  
Author(s):  
Youdong Wang ◽  
Keiichiro Joh ◽  
Sadahiko Masuko ◽  
Hitomi Yatsuki ◽  
Hidenobu Soejima ◽  
...  

ABSTRACT The mouse Murr1 gene contains an imprinted gene, U2af1-rs1, in its first intron. U2af1-rs1 shows paternal allele-specific expression and is transcribed in the direction opposite to that of the Murr1 gene. In contrast to a previous report of biallelic expression of Murr1 in neonatal mice, we have found that the maternal allele is expressed predominantly in the adult brain and also preferentially in other adult tissues. This maternal-predominant expression is not observed in embryonic and neonatal brains. In situ hybridization experiments that used the adult brain indicated that Murr1 gene was maternally expressed in neuronal cells in all regions of the brain. We analyzed the developmental change in the expression levels of both Murr1 and U2af1-rs1 in the brain and liver, and we propose that the maternal-predominant expression of Murr1 results from transcriptional interference of the gene by U2af1-rs1 through the Murr1 promoter region.


Development ◽  
1991 ◽  
Vol 112 (4) ◽  
pp. 981-995 ◽  
Author(s):  
L. Boyd ◽  
E. O'Toole ◽  
C.S. Thummel

Metamorphosis in Drosophila is triggered by a pulse of the steroid hormone ecdysone at the end of larval development. Ecdysone initiates a genetic hierarchy that can be visualized as a series of puffs in the larval salivary gland polytene chromosomes. The E74 gene is responsible for the early ecdysone-inducible puff at position 74EF and encodes two related DNA-binding proteins which appear to play a regulatory role in the hierarchy. Here we describe the spatial and temporal patterns of E74A RNA and protein expression at the onset of metamorphosis. We use in situ hybridization, antibody stains, and western and northern blot analyses to follow E74A expression from its initial appearance as nascent transcripts on the polytene chromosomes, to spliced mRNA, to post-translationally modified nuclear E74A protein. E74A is expressed in a wide variety of late-third instar tissues, suggesting that it plays a broad pleiotropic role in response to the hormone. In early prepupae, when the overall levels of E74A mRNA are decreasing, relatively high levels of E74A RNA persist in the gut, peripodial membranes of the imaginal discs, and proliferation centers of the brain. The spatial distribution of nuclear E74A protein correlates with the RNA distribution with the single exception that no E74A protein can be detected in the proliferation centers of the brain. There is also a temporal discrepancy between E74A mRNA and protein accumulation. The peak of E74A protein induced by the late larval ecdysone pulse follows the peak of E74A mRNA by approximately 2 h. This delay is not seen in 10 h prepupae, when the next pulse of ecdysone induces the simultaneous expression of E74A mRNA and protein. We discuss possible mechanisms for post-transcriptional regulation of E74A expression and suggest that the unusually long and complex 5′ leader in the E74A mRNA may regulate its translation.


1988 ◽  
Vol 8 (12) ◽  
pp. 5378-5385 ◽  
Author(s):  
L Saez ◽  
M W Young

The per locus influences biological rhythms in Drosophila melanogaster. In this study, per transcripts and proteins were localized in situ in pupae and adults. Earlier genetic studies have demonstrated that per expression is required in the brain for circadian locomotor activity rhythms and in the thorax for ultradian rhythmicity of the Drosophila courtship song. per RNA and proteins were detected in a restricted group of cells in the eyes and optic lobes of the adult brain and in many cell bodies in the adult and pupal thoracic ganglia. per products were also found in the pupal ring gland complex, a tissue involved in rhythmic aspects of Drosophila development. Abundant expression was seen in gonadal tissue. No biological clock phenotypes have been reported for this tissue in any of the per mutants, per protein mapped to different subcellular locations in different tissues. The protein accumulated in or around nuclei in some cells and appeared to be cytoplasmic in others.


2020 ◽  
Author(s):  
Liam Koehn ◽  
Katarzyna M Dziegielewska ◽  
Mark D Habgood ◽  
Yifan Huang ◽  
Norman R Saunders

Abstract Background: Adenosine triphosphate binding cassette transporters such as P-glycoprotein (PGP) play an important role in drug pharmacokinetics by actively effluxing their substrates at barrier interfaces, including the blood-brain, blood-cerebrospinal fluid (CSF) and placental barriers. For a molecule to access the brain during fetal stages it must bypass efflux transporters at both the placental barrier and brain barriers themselves. Following birth, placental protection is no longer present and brain barriers remain the major line of defense. Understanding developmental differences that exist in the transfer of PGP substrates into the brain is important for ensuring that medication regimes are safe and appropriate for all patients. Methods: In the present study PGP substrate rhodamine-123 (R123) was injected intraperitoneally into E19 dams, postnatal (P4, P14) and adult rats. Naturally fluorescent properties of R123 were utilized to measure its concentration in blood-plasma, CSF and brain by spectrofluorimetry (Clariostar). Statistical differences in R123 transfer (ratios between tissue and plasma concentrations) were determined using Kruskal-Wallis tests with Dunn’s corrections. Results: Following maternal injection the transfer of R123 across the E19 placenta from maternal blood to fetal blood was around 20%. Of the R123 that reached fetal circulation 41% transferred into brain and 38% into CSF. The transfer of R123 from blood to brain and CSF was lower in postnatal pups and decreased with age (brain: 43% at P4, 22% at P14 and 9% in adults; CSF: 8% at P4, 8% at P14 and 1% in adults). Transfer from maternal blood across placental and brain barriers into fetal brain was approximately 8%, similar to the transfer across adult blood-brain barriers (9%). Following birth when placental protection was no longer present, transfer of R123 from blood into the newborn brain was significantly higher than into adult brain (3 fold, p<0.05). Conclusions: Administration of a PGP substrate to infant rats resulted in a higher transfer into the brain than equivalent doses at later stages of life or equivalent maternal doses during gestation. Toxicological testing of PGP substrate drugs should consider the possibility of these patient specific differences in safety analysis. Trial Registration: N/A.


2019 ◽  
Author(s):  
D.A. Carter

ABSTRACTSOX2 is a prominent member of the SOX family of transcription factors that has many different functional roles. This pleiotropy is made possible by multiple regulatory mechanisms that direct appropriate spatial and temporal patterns of expression, and therefore action. The current study concerns the mechanisms that determine Sox2 gene expression in the adult mammalian brain, where SOX2 protein is absent in general, but is selectively and abundantly expressed in a majority of neurons within a ventral diencephalic brain structure, the suprachiasmatic nucleus (SCN). In this study, a comparative bioinformatic and biochemical analysis of different adult rat brain regions was conducted in order to identify SCN-selective (immaturity-related) regulatory mechanisms. The approach incorporated an integrated analysis of Sox2 enhancers, CTCF binding sites, and also expression of the Sox2-overlapping, long non-coding (lnc)RNA, Sox2ot. Initial experiments revealed brain region-specific Sox2ot expression (including region-specific novel transcripts), indicating a significant diversity of Sox2ot expression across the adult brain. However, the pattern and abundance of Sox2ot expression in the SCN, relative to selected control areas of the brain, did not indicate an overt relationship to Sox2 gene expression. Furthermore, although multiple individual Sox2ot exon sequences were shown to overlap annotated Sox2 gene enhancers at different sites across the Sox2 locus, again there was no indication of a SCN-specific functional correlation. Further integration with an analysis of selectively-active CTCF sites within the Sox2 locus directed attention to one site with both a prominent peak of activity in immature brain, and proximity to a functionally-characterized, ventral diencephalic, Sox2 enhancer termed U6 (upstream enhancer 6). Ex vivo analysis of the U6-associated CTCF site revealed SCN-selective CTCF binding, and these sequences were both localized within a known (brain region-selective) super-enhancer. Bioinformatic analysis of the U6 enhancer sequence revealed an abundance of consensus sites for the SCN-selective transcription factor LHX1, and over-expression of this factor enhanced the activity of cloned U6 sequence in transfected cells. However, despite this compelling evidence for a molecular mechanism that underlies adult brain expression of SOX2, further analysis of LHX1-SOX2 co-expression in the SCN confounded this view, indicating the presence of other concurrent mechanisms in the different cell populations of the SCN.


1961 ◽  
Vol 39 (8) ◽  
pp. 1231-1238 ◽  
Author(s):  
E. T. Pritchard ◽  
H. Singh

The experimental results indicate that the production of thiobarbituric acid (TBA) positive material, apparently derived for the most part from polyunsaturated fatty acid peroxidation, decreases with maturation of rat brain. It appears that during maturation some factor or process is gradually introduced into, or generated within, the brain which retards the tendency of unsaturates to undergo oxidation in situ. This process is possibly related to the maintenance of stability in adult brain.


Author(s):  
Antonia Alonso ◽  
Carmen María Trujillo ◽  
Luis Puelles

AbstractThe prethalamic eminence (PThE), a diencephalic caudal neighbor of the telencephalon and alar hypothalamus, is frequently described in mammals and birds as a transient embryonic structure, undetectable in the adult brain. Based on descriptive developmental analysis of Tbr1 gene brain expression in chick embryos, we previously reported that three migratory cellular streams exit the PThE rostralward, targeting multiple sites in the hypothalamus, subpallium and septocommissural area, where eminential cells form distinct nuclei or disperse populations. These conclusions needed experimental corroboration. In this work, we used the homotopic quail-chick chimeric grafting procedure at stages HH10/HH11 to demonstrate by fate-mapping the three predicted tangential migration streams. Some chimeric brains were processed for Tbr1 in situ hybridization, for correlation with our previous approach. Evidence supporting all three postulated migration streams is presented. The results suggested a slight heterochrony among the juxtapeduncular (first), the peripeduncular (next), and the eminentio-septal (last) streams, each of which followed differential routes. A possible effect of such heterochrony on the differential selection of medial to lateral habenular hodologic targets by the migrated neurons is discussed.


2003 ◽  
Vol 228 (5) ◽  
pp. 517-524 ◽  
Author(s):  
Claudia Colombrita ◽  
Vittorio Calabrese ◽  
Anna Maria Giuffrida Stella ◽  
Francesca Mattei ◽  
Daniel L. Alkon ◽  
...  

Increasing evidence supports the notion that reduction of cellular expression and activity of antioxidant proteins and the resulting increase of oxidative stress are fundamental causes in the aging processes and neurodegenerative diseases. In the present study, we evaluated, in the brains of young and aged rats, the gene expression profiles of two inducible proteins critically involved in the cellular defense against endogenous or exogenous oxidants: heme oxygenase-1 (HO-1) and manganese superoxide dismutase-2 (SOD-2). SOD-2 is an essential antioxidant and HO-1 has been reported to be very active in regulating cellular redox homeostasis. Deregulation of these enzymes has been extensively reported to play a crucial role in the pathogenesis of neurodegenerative disorders. To measure the regional distribution of HO-1 and SOD-2 transcript levels in the rat brain, we have developed a real time quantitative reverse transcription-polymerase chain reaction protocol. Although these two genes presented a highly dissimilar range of expression, with SOD-2 >HO-1, both transcripts were highly expressed in the cerebellum and the hippocampus, showing in a different scale a strikingly parallel distribution gradient. To further investigate the regional brain expression of these mRNAs, we performed in situ hybridization using specific riboprobes. In situ hybridization results showed that both transcripts were highly concentrated in the hippocampus, the cerebellum and some specific regions of the brain cortex. We have also quantified, by reverse transcription-polymerase chain reaction, the brain expression of HO-1 and SOD-2 mRNAs in middle aged (12 months) and aged (28 months) rats. We found that the hippocampus of aged rats presents a significant down regulation of SOD2 mRNA expression and a parallel upregulation of HO-1 mRNA compared with young (6 months) and middle-aged rats. Furthermore, in the cerebellum of the aged rats, we detected a parallel significant upregulation of both HO-1 and SOD-2 transcripts. These regional age-dependent differences may help to explain the increased susceptibility to oxidative damage in these two brain areas during aging.


1988 ◽  
Vol 8 (12) ◽  
pp. 5378-5385
Author(s):  
L Saez ◽  
M W Young

The per locus influences biological rhythms in Drosophila melanogaster. In this study, per transcripts and proteins were localized in situ in pupae and adults. Earlier genetic studies have demonstrated that per expression is required in the brain for circadian locomotor activity rhythms and in the thorax for ultradian rhythmicity of the Drosophila courtship song. per RNA and proteins were detected in a restricted group of cells in the eyes and optic lobes of the adult brain and in many cell bodies in the adult and pupal thoracic ganglia. per products were also found in the pupal ring gland complex, a tissue involved in rhythmic aspects of Drosophila development. Abundant expression was seen in gonadal tissue. No biological clock phenotypes have been reported for this tissue in any of the per mutants, per protein mapped to different subcellular locations in different tissues. The protein accumulated in or around nuclei in some cells and appeared to be cytoplasmic in others.


Sign in / Sign up

Export Citation Format

Share Document