Numerical simulation of dispersion and distribution behaviors of hydrogen leakage in the garage with a crossbeam

SIMULATION ◽  
2019 ◽  
Vol 95 (12) ◽  
pp. 1229-1238 ◽  
Author(s):  
Yunhao Li ◽  
Juncheng Jiang ◽  
Yuan Yu ◽  
Qingwu Zhang

A three-dimensional computational fluid dynamics simulation model resolved by the unsteady Reynolds-Averaged Navier–Stokes equations was developed to predict hydrogen dispersion in an indoor environment. The effect of the height of the crossbeam (Hc) on hydrogen dispersion and distribution behaviors in a four-car garage was numerically investigated under fully confined and natural ventilation conditions. For the fully confined condition, the garage was almost completely filled with a flammable hydrogen cloud at t=600 s. In addition, the volumetric ratio of the flammable region, thickness of the hydrogen stratification, and hydrogen mole fraction all increased as Hc increased. When two symmetric ventilation openings were set up, the volumetric ratio of the flammable region decreased by 50% at t=600 s. Moreover, Hc had evident influence on the vertical distribution of hydrogen mole fraction. In addition, there existed little explosion hazard under the height of 1.6 m. The results show that Hc was a non-negligible factor for the safety design of hydrogen in the garage and Hc=0.12 m was the optimal height of the crossbeam. Furthermore, the ventilation system in the present study cannot completely eliminate the risk of hydrogen explosion. The present risk assessment results can be useful to analyze safety issues in automotive applications of hydrogen.

2013 ◽  
Vol 319 ◽  
pp. 599-604
Author(s):  
Makhsuda Juraeva ◽  
Kyung Jin Ryu ◽  
Sang Hyun Jeong ◽  
Dong Joo Song

A computational model of existing Seoul subway tunnelwas analyzed in this research. The computational model was comprised of one natural ventilationshaft, two mechanical ventilationshafts, one mechanical airsupply, a twin-track tunnel, and a train. Understanding the flow pattern of the train-induced airflow in the tunnel was necessary to improve ventilation performance. The research objective wasto improve the air quality in the tunnel by investigating train-induced airflow in the twin-track subway tunnel numerically. The numerical analysis characterized the aerodynamic behavior and performance of the ventilation system by solving three-dimensional turbulent Reynolds-averaged Navier-Stokes equations. ANSYS CFX software was used for the computations. The ventilation and aerodynamic characteristics in the tunnel were investigated by analyzing the mass flowrateat the exits of the ventilation mechanicalshafts. As the train passed the mechanical ventilation shafts, the amount of discharged-air in the ventilationshafts decreased rapidly. The air at the exits of the ventilation shafts was gradually recovered with time, after the train passed the ventilation shafts. The developed mechanical air-supply for discharging dusty air and supplying clean airwas investigated.The computational results showed that the developed mechanical air-supplycould improve the air quality in the tunnel.


2018 ◽  
Vol 38 (3) ◽  
pp. 321-327
Author(s):  
Jingfu Jia ◽  
Manjin Hao ◽  
Jianhua Zhao

Forced or natural ventilation is the most common measure of frost heave protection for refrigerated warehouse floor. To optimize air velocity for the underfloor forced ventilation system of refrigerated warehouse, a steady state three-dimensional mathematical model of heat transfer is set up in this paper. The temperature fields of this system are simulated and calculated by CFD software PHOENICS under different air velocity, 1.5m/s, 2.5m/s or 3.5m/s. The results show that the optimized air velocity is 1.5m/s when the tube spacing is 1.5m.


2004 ◽  
Vol 71 (1) ◽  
pp. 89-95 ◽  
Author(s):  
S. Mittal

Flow past a spinning circular cylinder placed in a uniform stream is investigated via three-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier-Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and freestream speed of the flow is 200. The nondimensional rotation rate, α, (ratio of the surface speed and freestream speed) is 5. It is found that although the two-dimensional flow for α=5 is stable, centrifugal instabilities exist along the entire span in a three-dimensional set-up. In addition, a “no-slip” side-wall can result in separation of flow near the cylinder ends. Both these effects lead to a loss in lift and increase in drag. The end conditions and aspect ratio of the cylinder play an important role in the flow past a spinning cylinder. It is shown that the Prandtl’s limit on the maximum lift generated by a spinning cylinder in a uniform flow does not hold.


Author(s):  
Guy Abou-Nassar ◽  
Zahed Siddique ◽  
Lee Fithian

Double skin facades (DSF) provide a means of enhancing the energy saving capabilities of buildings. By being able to respond dynamically to changing ambient conditions using natural ventilation, shading devices, and/or thermal insulation devices or strategies, DSFs are being incorporated into modern architecture and even retrofitted in some older structures to reduce the energy required to balance the load input into the building. Utilizing a general building model and weather conditions and integrating various designs for DSFs, a comparative study can be made to support or oppose the different designs changes being made. The analysis of the set-up will be performed by Fluent, a computational fluid dynamics (CFD) software. Fluent will solve for the Navier-Stokes equations and turbulent flow using the finite volume method. These results show that the energy necessary to power the HVAC system decreases with certain configurations.


2016 ◽  
Vol 66 (6) ◽  
pp. 624 ◽  
Author(s):  
Anand Bhandarkar ◽  
Souraseni Basu ◽  
P. Manna ◽  
Debasis Chakraborty

<p>Combined external-internal flow simulation is required for the estimation of aerodynamic forces and moments of high speed air-breathing vehicle design. A wingless, X-tail configuration with asymmetrically placed rectangular air intake is numerically explored for which experimental data is available for different angles of attack. The asymmetrically placed air intakes and protrusions make the flow field highly three-dimensional and existing empirical relations are inadequate for preliminary design. Three dimensional Navier Stokes equations along with SST-kω turbulence model were solved with a commercial CFD solver to analyse the combined external and internal flow field of the configuration at different angles of attack. Estimated aerodynamic coefficients match well with experimental data and estimated drag coefficient are within 8.5 per cent of experimental data. Intake performance parameters were also evaluated for different angles of attack.</p>


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


Author(s):  
Surabhi Rathore ◽  
Tomoki Uda ◽  
Viet Q. H. Huynh ◽  
Hiroshi Suito ◽  
Toshitaka Watanabe ◽  
...  

AbstractHemodialysis procedure is usually advisable for end-stage renal disease patients. This study is aimed at computational investigation of hemodynamical characteristics in three-dimensional arteriovenous shunt for hemodialysis, for which computed tomography scanning and phase-contrast magnetic resonance imaging are used. Several hemodynamical characteristics are presented and discussed depending on the patient-specific morphology and flow conditions including regurgitating flow from the distal artery caused by the construction of the arteriovenous shunt. A simple backflow prevention technique at an outflow boundary is presented, with stabilized finite element approaches for incompressible Navier–Stokes equations.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 841
Author(s):  
Yuzhen Jin ◽  
Huang Zhou ◽  
Linhang Zhu ◽  
Zeqing Li

A three-dimensional numerical study of a single droplet splashing vertically on a liquid film is presented. The numerical method is based on the finite volume method (FVM) of Navier–Stokes equations coupled with the volume of fluid (VOF) method, and the adaptive local mesh refinement technology is adopted. It enables the liquid–gas interface to be tracked more accurately, and to be less computationally expensive. The relationship between the diameter of the free rim, the height of the crown with different numbers of collision Weber, and the thickness of the liquid film is explored. The results indicate that the crown height increases as the Weber number increases, and the diameter of the crown rim is inversely proportional to the collision Weber number. It can also be concluded that the dimensionless height of the crown decreases with the increase in the thickness of the dimensionless liquid film, which has little effect on the diameter of the crown rim during its growth.


Sign in / Sign up

Export Citation Format

Share Document