scholarly journals New indicators on fabric drape evaluation based on three-dimensional model

2019 ◽  
Vol 90 (11-12) ◽  
pp. 1291-1300
Author(s):  
Zhicai Yu ◽  
Yueqi Zhong ◽  
R. Hugh Gong ◽  
Haoyang Xie

To evaluate the ability of woven fabrics to drape in a more accurate way, a three-dimensional point cloud of a draped woven fabric was captured via an in-house drape-scanner. A new indicator, total drape angle (TDA), was proposed based on the three-dimensional fabric drape to characterize the ability of a woven fabric to drape. The relationship between TDA and the drape coefficient (DC) was analyzed to validate the performance of TDA. The result indicated that TDA is more stable and representative than the traditional DC in characterizing the ability of a woven fabric to drape. In addition, the drape angle distribution function (DADF) of the triangular mesh was employed to describe fabric drape, as well as to bridge the gap between drape configuration and the warp bending rigidity of woven fabric. The results showed that the correlation coefficient between the real warp bending rigidity value and what was predicted warp based on DADF and fabric weight was 0.952.

2020 ◽  
pp. 004051752096334
Author(s):  
Liu Yang ◽  
KyoungOk Kim ◽  
Masayuki Takatera

We propose a measuring method of shear deformation in drape using three-dimensional (3D) scanning. We measured the local shear angles in fabric drape based on the Fabric Research Laboratories (FRL) drape test for woven fabrics using the proposed method. We investigate the effects of the relative positions of the node to the center grainlines that cross at the fabric center, and the bending and shear properties of fabric on the shear angles. To measure the local shear deformation, we obtained 3D drape shapes of four different fabrics with three to six nodes. We covered the obtained drape shapes using a fabric model composed of square cells that allowed shear deformation. By calculating the shear angles of the cells, we obtained the local shear deformation. We found that the FRL drape can be characterized by three areas, except for the flat areas of the support disks: (a) areas along the center grainlines with zero or small shear angles within 3°, which could result from single curvature bending; (b) areas in the bias directions with relatively large shear angles over 3°, which could result from double curvature bending; and (c) polygon edges connected by tangents of the support disk with relatively larger shear angles than their surroundings, which could result from both bending and shear deformation, such as folding and wrinkles. By investigating the relationships between areas with large shear angles and the bending rigidity/shear stiffness, we clarified that the bending rigidity indirectly affects the local shear deformation of drape.


2003 ◽  
Vol 11 (6) ◽  
pp. 465-476 ◽  
Author(s):  
Y. S. Song ◽  
K. Chung ◽  
T. J. Kang ◽  
J. R. Youn

The complete prediction of the second order permeability tensor for a three dimensional multi-axial preform is critical if we are to model and design the manufacturing process for composites by considering resin flow through a multi-axial fiber structure. In this study, the in-plane and transverse permeabilities for a woven fabric were predicted numerically by the coupled flow model, which combines microscopic and macroscopic flows. The microscopic and macroscopic flows were calculated by using 3-D CVFEM(control volume finite element method) for micro and macro unit cells. To avoid a checkerboard pressure field and improve the efficiency of numerical computation, a new interpolation function for velocity is proposed on the basis of analytical solutions. The permeability of a plain woven fabric was measured by means of an unidirectional flow experiment and compared with the permeability calculated numerically. Reverse and simple stacking of plain woven fabrics were taken into account and the relationship between the permeability and the structures of the preform such as the fiber volume fraction and stacking order is identified. Unlike other studies, the current study was based on a more realistic three dimensional unit cell. It was observed that in-plane flow is more dominant than transverse flow within the woven perform, and the effect of the stacking order of a multi-layered preform was negligible.


2019 ◽  
Vol 90 (11-12) ◽  
pp. 1354-1371
Author(s):  
Marzieh Javadi Toghchi ◽  
Carmen Loghin ◽  
Irina Cristian ◽  
Christine Campagne ◽  
Pascal Bruniaux ◽  
...  

The main objective of the present study was to investigate the increase in the electromagnetic shielding effectiveness (EMSE) of a set of five variants of three-dimensional (3D) warp interlock woven fabrics containing silver multifilament yarns arranged in a 3D orthogonal grid. The EMSE enlargement as a factor of increasing the quantity of the conductive material per unit area was investigated. The quantity of the conductive material per unit area in a 3D woven fabric can be enlarged by increasing either the yarn undulation or the number of conductive yarn systems, while the yarn density and yarn fineness are fixed. Thus, the binding depth of the conductive warp was gradually increased for the first four variants in order to increase the yarn undulation. Alternatively, the conductive weft system was doubled for the last variant with the aim of increasing the quantity of the conductive component. It should be noted that changing the weave structure requires less effort and energy while keeping the same threading of warps in the reed compared to altering the warp density. The EMSE was measured in an anechoic chamber and the shielding was satisfactory for all the variants in the frequency range of 1–6 GHz (19–44 dB). The results revealed that increasing only 7% of the waviness degree of the conductive warps led to 17% EMSE improvement due to increasing of the conductive yarns through the thickness of the variants. Moreover, no upward EMSE was detected for the last variant, despite the fact that the conductive weft system was doubled.


2014 ◽  
Vol 18 (2) ◽  
pp. 96-107
Author(s):  
Abdel-Fattah M. Seyam ◽  
Sanaa S. Saleh ◽  
Mamdouh Y. Sharkas ◽  
Heba Z. AbouHashish

A range of intricate finished seamless shaped garments have been developed with the aim to fit predetermined sizes. The shape is created by using woven tubular fabrics with differential shrinkage in the same garment. The differential shrinkage is obtained by altering the fabric construction parameters at strategic locations along the length of the garment. The construction arameters include different weaves (plain, 2/2 basket, 1/3 twill, 2/2 twill, and crowfoot), weft densities, weft yarn counts, and weft yarns with different shrinkages (cotton, cotton that contains spandex, and cotton/polyester yarns). The weft yarn tension is used as an additional parameter to influence fabric shrinkage. A total of thirty-three woven fabrics are formed to establish the relationship between the construction parameters, weft tension, and shrinkage of the finished woven fabric. The relationship is used to produce a range of intricate garments with inherent shapes and predetermined sizes.


1998 ◽  
Vol 35 (6) ◽  
pp. 649-656 ◽  
Author(s):  
Mark D Behn ◽  
J Dykstra Eusden, Jr. ◽  
John A Notte III

The Sebago pluton is a two-mica granite that intruded the metasedimentary rocks of the Central Maine Terrane around 292 Ma. In recent years, geologists have raised an increasing number of questions related to the overall thickness of the Sebago pluton and the position of its subsurface contact with the underlying metasedimentary rocks. Past studies have shown the Sebago pluton to be a thin, 1-2 km thick, subhorizontal sheet dipping 3° to the northeast. This study examines anomalies in the Earth's gravitational field related to the southern portion of the Sebago pluton, specifically to determine the thickness of the pluton and to locate the subsurface contact between the pluton and the underlying metasedimentary rocks. A three-dimensional model shows the thickest portions of the pluton (~1.8 km) to occur at the bottom of a bowl hape along the southwestern contact. Moreover, the model shows the pluton to thin toward the northern and eastern regions of the study area, where the average thickness is less than 0.5 km. The pluton appears to extend southward below the cover of the metasedimentary rocks along the southwestern contact. Thus, contrary to previous models, the Sebago pluton is not a northeasterly dipping sheet of uniform thickness, but rather an arched sheet with an irregular thickness extending beneath the metasedimentary rocks along both its northern and southern contacts. Based on this new geometry, either the relationship of the pluton to the surrounding metamorphic zones must be modified, or the possibility must be considered that the Sebago pluton is actually a composite batholith, composed of a younger (Permian) granite to the north and an older (Carboniferous) granite to the south.


2021 ◽  
pp. 41-42
Author(s):  
Anastasiadis A ◽  
Ntovoli A

The purpose of this study was to test the relationship between sport service quality and sport involvement. The data were collected from 500 individuals, users of sport facilities, in the city of Thessaloniki, Greece. Items from the SERVQUAL model were used to measure sport service quality. The three-dimensional model of leisure involvement was used to measure sport involvement (Centrality, Attraction and Self-expression). The results of the study revealed statistically signicant correlations between service quality and two of the three dimensions of sport involvement: centrality and self-expression, supporting the important role of service quality in developing sport policy. These results propose that policy makers should invest on building service quality in sport services and facilities, since this will increase sport participation levels and help citizens adopt a more active life-style.


2012 ◽  
Vol 443-444 ◽  
pp. 408-411
Author(s):  
Yan Fang Wang ◽  
Xing Feng Guo

The woven fabric with curved surfaces is a kind of single layer woven fabrics, which was produced to smoothly fit three-dimensional solids. The warp or weft of the winding fabric bend were normally made with different lengths, which may result in shear deformation in many cases and accordingly twisting the structure of the fabric after fitted onto the solid. In order to solve the problem mentioned above, a theoretical formula was used to calculate the optimal intervals of the pick-spacing and an improved structure thus was developed in this study.


2014 ◽  
Vol 14 (3) ◽  
pp. 363-381 ◽  
Author(s):  
Béchir Ben Lahouel ◽  
Jean-Marie Peretti ◽  
David Autissier

Purpose – This paper aims to explore the power of one of the primary organizational stakeholders (shareholders) in the development of a corporate social performance (CSP) score. Few research works in the CSP empirical literature have studied the relationship between stakeholder power and CSP. Design/methodology/approach – Stakeholder theory is used as a theoretical framework to explain how shareholder voting power can influence the CSP level of French publicly listed companies. Stakeholder theory is tested through the operationalization of Ullmann’s (1985) three-dimensional model. Hypotheses related to shareholder voting power, strategic posture and financial performance are formulated through a literature review. A Data Envelopment Analysis approach was presented as a strong tool to measure CSP level. Multiple linear regressions were undertaken to test the hypotheses in a sample of 129 French companies between 2006 and 2007. Findings – The results indicate that companies with dispersed ownership and high proportion of institutional shareholders record a high score of CSP. Strategic posture measured by the implementation of environmental certification standard was positively and significantly related to CSP. Financial performance does not affect significantly the level of CSP. Originality/value – This paper is the first to empirically analyse the relationship between Ullmann’s three-dimensional model and CSP level in the French context. It offers to managers a better understanding of the power that certain stakeholders can use to acquire satisfaction.


2013 ◽  
Vol 554-557 ◽  
pp. 507-511
Author(s):  
Hong Ling Yin ◽  
Xiong Qi Peng ◽  
Tong Liang Du ◽  
Jun Chen

By combining carbon woven fabric with thermoplastics grains, a thermo-stamping process is proposed for forming parts with complex double curvatures in one step, to implement the affordable application of fiber reinforced composites in high volume merchandises such as automotive industry. In the proposed thermo-stamping process, laminated carbon woven fabrics with thermoplastic grains are heated, and then transferred rapidly to a preheated mould for thermo-stamping, and cooled down to form the carbon fiber reinforced composite part. Various thermoplastics such as PP, PA6 and ABS are used as matrix material in the composite part. Experimental results including shear angle distribution in the fabric, deformed boundary profile of fabric with different original fiber orientation and forming defects are presented. It is demonstrated that high quality parts can be obtained with the proposed forming process, and defects are controllable. By using the proposed process and laminated structures, it is feasible to implement the high-volume and low-cost manufacturing of fiber reinforced composite parts.


Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 861 ◽  
Author(s):  
Ye Kuang ◽  
Lan Yao ◽  
Sheng-Hai Yu ◽  
Shuo Tan ◽  
Xiu-Jun Fan ◽  
...  

Wearable antennas play an important role in transmitting signals wirelessly in body-worn systems, helping body-worn applications to achieve real-time monitoring and improving the working efficiency as well as the life quality of the users. Over conventional antenna types, ultra wideband (UWB) antennas have advantages of very large operating bandwidth, low power consumption, and high data transmission speed, therefore, they become of great interest for body-worn applications. One of the strategies for making the antenna comfortable to wear is replacing the conventional rigid printed circuit board with textile materials in the manufacturing process. In this study, a novel three-dimensional woven fabric integrated UWB antenna was proposed and fabricated with pure textile materials. The antenna electromagnetic properties were simulated and measured and its properties under bending were investigated. The antenna operated in a wide bandwidth from 2.7 to 13 GHz with the proper radiation pattern and gain value. At the same time, the antenna performance under bending varied in a reasonable range indicating that the antenna is prospectively applied on the curved surfaces of the human body. Additionally, the current distribution of the antenna showed that different conductive parts had different current densities indicating the uniqueness of the three-dimensional textile-based antenna.


Sign in / Sign up

Export Citation Format

Share Document