A correction to van Wyk’s model of the compressibility of fibrous materials

2021 ◽  
pp. 004051752110174
Author(s):  
Amit Rawal

van Wyk put forward a compression model of fibrous materials utilizing a library of analytical approaches, including the continuum mechanics, stereological, geometrical probability, least square method, and excluded area concept. In this letter, we wish to point out a key error noted in van Wyk’s work with the objective of correcting misconceptions that are held by the majority of us. Through this contribution, we question the “inverse cube” pressure-volume relationship of random fibrous materials. The pressure-volume relationship has been revisited by modifying the formulation of the mean length of a fiber element between consecutive contacts projected on the compression direction.

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Shuang-Ling Tang ◽  
Yu Wang ◽  
Qi-Ying Xia ◽  
Xue-Hai Ju

Potential energy surface scanning for UC, UN, and UH was performed by configuration interaction (CI), coupled cluster singles and doubles (CCSD) excitation, quadratic configuration interaction (QCISD (T)), and density functional theory PBE1 (DFT-PBE1) methods in coupling with the ECP80MWB_AVQZ + 2f basis set for uranium and 6 − 311 + G∗ for carbon, hydrogen, and nitrogen. The dissociation energies of UC, UN, and UH are 5.7960, 4.5077, and 2.6999 eV at the QCISD (T) levels, respectively. The calculated energy was fitted to the potential functions of Morse, Lennard-Jones, and Rydberg by using the least square method. The anharmonicity constant of UC is 0.0047160. The anharmonic frequency of UC is 780.27 cm−1 which was obtained based on the PBE1 results. For UN, the anharmonicity constant is 0.0049827. The anharmonic frequency is 812.65 cm−1 which was obtained through the PBE1 results. For UH, the anharmonicity constant is 0.017300. The anharmonic frequency obtained via the QCISD (T) results is 1449.8 cm−1. The heat capacity and entropy in different temperatures were calculated using anharmonic frequencies. These properties are in good accordance with the direct DFT-UPBE1 results (for UC and UN) and QCISD (T) results (for UH). The relationship of entropy with temperature was established.


2017 ◽  
Vol 07 (02) ◽  
pp. e86-e92 ◽  
Author(s):  
Kathleen Antony ◽  
Diana Racusin ◽  
Michael Belfort ◽  
Gary Dildy

Objective Uterine tamponade by fluid-filled balloons is now an accepted method of controlling postpartum hemorrhage. Available tamponade balloons vary in design and material, which affects the filling attributes and volume at which they rupture. We aimed to characterize the filling capacity and pressure-volume relationship of various tamponade balloons. Study Design Balloons were filled with water ex vivo. Intraluminal pressure was measured incrementally (every 10 mL for the Foley balloons and every 50 mL for all other balloons). Balloons were filled until they ruptured or until 5,000 mL was reached. Results The Foley balloons had higher intraluminal pressures than the larger-volume balloons. The intraluminal pressure of the Sengstaken-Blakemore tube (gastric balloon) was initially high, but it decreased until shortly before rupture occurred. The Bakri intraluminal pressure steadily increased until rupture occurred at 2,850 mL. The condom catheter, BT-Cath, and ebb all had low intraluminal pressures. Both the BT-Cath and the ebb remained unruptured at 5,000 mL. Conclusion In the setting of acute hemorrhage, expeditious management is critical. Balloons that have a low intraluminal pressure-volume ratio may fill more rapidly, more easily, and to greater volumes. We found that the BT-Cath, the ebb, and the condom catheter all had low intraluminal pressures throughout filling.


1980 ◽  
Vol 239 (2) ◽  
pp. H189-H198 ◽  
Author(s):  
H. S. Goldberg

Static and dynamic properties governing the fluid movement into the pulmonary interstitium were examined in isolated canine lobes. The system was driven by altering intravascular presure (Piv) when the lobe was isogravimetric (change in weight (W) = 0) and allowing the lobe to become isogravimetric again. By making use of an analogy to charging a capacitor across a resistor, calculation of the filtration coefficient for transvascular fluid movement (KF) and determination of the pressure-volume relationship of the pulmonary interstitial space (Pis-Vis), with a minimum of untested assumptions, was possible. KF was found to be the same for fluid moving out of or into the intravascular space, and when the relationship between Piv and alveolar pressure (PAlv) was constant, KF was independent of transpulmonary pressure (PL). When PAlv exceeded Piv, changes in Piv did not influence KF, suggesting no significant change in either surface area available for fluid transudation or vascular permeability. The Pis-Vis curve for increasing values of Vis and Pis is best described by an exponential relationhip and is independent of PL. However, the Pis-Vis curve with decreasing values of Vis and Pis is dependent on PL.


1956 ◽  
Vol 40 (1) ◽  
pp. 91-105 ◽  
Author(s):  
C. Y. Kao

Upon activation, an internal hydrostatic pressure develops within the Fundulus egg, and compresses the egg proper to a reduced volume. When the perivitelline pressure is abolished by a highly hypertonic sucrose solution, the egg volume increases. As sucrose penetrates the chorion, the volume again decreases. The relation between P and V in these conditions is inverse, and approximates a rectangular hyperbola. The limiting factor causing most of the deviation is shown to be the incompressible fraction. It is concluded that the volume of the egg proper is controlled by the perivitelline pressure, and that the effect of hypertonic sucrose solution is exerted by lowering the pressure and thereby increasing membrane permeability non-specifically. It is also shown that some permanent alterations occur within the plasma membrane during activation that reduce the permeance, and thereby, increase the incompressible fraction.


2020 ◽  
Vol 15 (6) ◽  
pp. 700-706
Author(s):  
Yifan Zhao ◽  
Mengyu Wang ◽  
Kai Wang

Due to its characteristics of using clean electric energy and bringing no damage to the environment, electric vehicles (EVs) have become a new developmental direction for the automotive industry. Its reliability issues have also attracted the attention of experts and professionals. In the field of automotive power control, from the perspective of motor control, this study uses the photoelectric sensors (PSs) as the research objects and elaborates on the measurement principles of motor speed with PSs. Meanwhile, a diagnosis scheme is proposed for various faults in the measurement. Among them, the measurement speed is converted by the photoelectric signal, and the measured waveform is amplified. In the fault detection process, the Radial Basis Function (RBF) artificial neural network (ANN) is analyzed. By using this method, the difference in the motor speed detected by the sensor is calculated to determine the cause of the failure. The test uses the least-square method to compare the tested motor speed with the actual motor speed. The results show that PSs can measure the motor speed of EVs. As for the motor failures, the mean square errors (MSEs) of motor speeds generated by different faults are compared to determine the fault points according to the speed changes. In addition, the cause of motor failure can be determined by the real-time calculation of the speed differences. The above tests fully prove the effectiveness of measuring the speed of electric motors by PSs; therefore, PSs have broad application prospects in vehicle power control systems.


1980 ◽  
Vol 53 (2) ◽  
pp. 173-179 ◽  
Author(s):  
Frederick H. Sklar ◽  
Jan T. Diehl ◽  
Chester W. Beyer ◽  
W. Kemp Clark

✓ The pressure-volume relationship of brain elasticity was determined in 32 patients during servo-controlled variable-rate lumbar infusions to measure net cerebrospinal fluid (CSF) absorptive capacity. Several indices were used to estimate ventricular size from computerized tomography scans. The results show a linear relationship between ventricular size and the elasticity slope which relates the natural logarithm of pressure to volume. It follows that a hydrocephalic patient should show a greater intracranial pulse amplitude at a given pressure than does a patient with normal-sized ventricles. Although these elasticity changes may simply be the result of the ventriculomegaly, it seems possible that the pressure-volume elasticity relationship may be of etiological importance in disorders of the CSF system.


Sign in / Sign up

Export Citation Format

Share Document