Temperature Effect on Dissipation of Triboelectric Charge into Air from Textile Surfaces

1997 ◽  
Vol 67 (1) ◽  
pp. 45-49 ◽  
Author(s):  
Yoshihiko Onogi ◽  
Naoko Sugiura ◽  
Chikako Matsuda

Triboelectric charges on textiles dissipate through a charge conduction mechanism and also by accompanying water molecules evaporating into air. The latter dissipation is less extensive than the former, but can be measured quantitatively under highly insulated experimental conditions. Rate constants of charge dissipation into the air at 20°C have been reported as a function of the ambient humidity and water content of fabrics. In this study, the rate constants are analyzed at temperatures above or below 20°C. Two kinds of water molecules, free and bound, are known to be present in the textile surface from charge dissipation analysis. Though free water is involved in atmospheric charge dissipation, the condition of water molecules in the fibers cannot be classified so simply. Rate constants of charge dissipation depend on the ambient absolute humidity and water content of sample fabrics for all the temperatures of these experiments.

2012 ◽  
Vol 512-515 ◽  
pp. 1905-1918
Author(s):  
Yu Xian Shao ◽  
Bin Shi ◽  
Chun Liu ◽  
Lei Gao

Temperature significantly influences the engineering properties of clayey soil and this temperature effect usually depends on soil type. In this investigation, laboratorial experiments were conducted on three soils to evaluate the adsorbed water content, Atterberg limits, swelling, shear strength and permeability under different temperatures (5-50°C). The results indicate that liquid limit decreases, swelling increases, permeability increases with increasing temperature. It is fundamentally due to the change of adsorbed water content. Hydrophilic minerals, which contain large amounts of adsorbed water, play an important role in the temperature effect. With the increase of hydrophilic minerals, the temperature effect on liquid limit increases and the effect on swelling ratio decreases. The hydrophilic minerals content also has significant impact on the temperature effect of permeability. With increasing temperature, the adsorbed water is transformed to free water, and then the permeability may increase significantly. The shear strength of clayey soils with higher content of hydrophilic mineral is more sensitive to temperature variation. The cohesive force mainly changes linearly with the temperature. Different phenomena, i.e. thermal-hardening or thermal-softening, was observed on strength behaviour due to different hydrophilic mineral content, moisture content and dry density of sample.


2019 ◽  
Vol 1 (2) ◽  
pp. 174-179
Author(s):  
Dessy Agustina Sari ◽  
Nurcahyo Widyodaru Saputro ◽  
Azafilmi Hakiim ◽  
Sukanta

Post-harvest processing of bananas Muli local Karawang – Loji area became a research study on a breakthrough the kind of food products. Previously, this fruit only sold to consumers in the roadside, and the rest was thrown away or not utilized. Users prefer to consume directly and fresh. After that, its medium size with a diameter 3 to 4 cm caused this raw material did not display to be a selling outcome such as “sale” or chips. Bananas Muli has never received further food processing compared to other types of bananas (such as bananas Kepok, bananas Raja, bananas Tanduk, bananas Ambon, and others). The term of fruit leather gave the development and novelty for product fruit categories in the form of sheets. Furthermore, the process that occurred was decreasing water content used microwave and oven dryers, then temperature range between 60-80oC with constant sample thickness in three suitable stabilizers. Utilization of oven dryers to produce banana leather products without stabilizers was more likely to choose a temperature of 70oC as the best condition for decreasing water content in the ingredients. Meanwhile, the use of microwaves was able to produce electromagnetic waves and caused collisions between molecules owned by the sample. The results indicated a positive effect. Carrageenan and starch were more capable of binding the water molecules. This way helped the process of reducing water content much faster from the surface (free water) to the area in the sample (water bound to the equilibrium water content). This research resulted in a decrease in water content in the example by 10,5701-12,8639% within 3 hours of the drying process at the optimum conditions


1980 ◽  
Vol 45 (6) ◽  
pp. 1639-1645 ◽  
Author(s):  
Jindřich Novák ◽  
Ivo Sláma

The dependence of the equivalent conductivity on the temperature and composition of the Ca(NO3)2-CaI2-H2O system was studied. The ionic fraction [I-]/([I-] + [NO-3]) was changed from 0.1 to 0.5, the mole fraction of calcium salts (assumed in anhydrous form in the presence of free water molecules) was 0.075-0.200. The equivalent conductivity was found to be a linear function of the ionic fraction at constant temperature and salt concentration.


2002 ◽  
Vol 67 (8) ◽  
pp. 1154-1164 ◽  
Author(s):  
Nachiappan Radha ◽  
Meenakshisundaram Swaminathan

The fluorescence quenching of 2-aminodiphenylamine (2ADPA), 4-aminodiphenylamine (4ADPA) and 4,4'-diaminodiphenylamine (DADPA) with tetrachloromethane, chloroform and dichloromethane have been studied in hexane, dioxane, acetonitrile and methanol as solvents. The quenching rate constants for the process have also been obtained by measuring the lifetimes of the fluorophores. The quenching was found to be dynamic in all cases. For 2ADPA and 4ADPA, the quenching rate constants of CCl4 and CHCl3 depend on the viscosity, whereas in the case of CH2Cl2, kq depends on polarity. The quenching rate constants for DADPA with CCl4 are viscosity-dependent but the quenching with CHCl3 and CH2Cl2 depends on the polarity of the solvents. From the results, the quenching mechanism is explained by the formation of a non-emissive complex involving a charge-transfer interaction between the electronically excited fluorophores and ground-state chloromethanes.


1981 ◽  
Vol 241 (3) ◽  
pp. F250-F256
Author(s):  
F. J. Gennari ◽  
C. Johns ◽  
C. R. Caflisch ◽  
S. Cortell

Medullary urea washout has been postulated to play a major role in the natriuretic response to volume expansion (VE). To examine this hypothesis, renal tissue solute composition was measured in a natriuretic and nonnatriuretic model of VE. Renal tissue composition was analyzed during hydropenia, acute VE, acute VE with renal artery pressure reduced to 70 mmHg at the onset of saline loading (immediate clamping), and acute VE with renal artery pressure reduced to 70 mmHg after 45 min of saline loading (delayed clamping). Immediate clamping, a nonnatriuretic model of VE, prevented VE-induced urea washout and the increase in sodium and water content in the cortex and outer medulla. Delayed clamping, a natriuretic model of VE, produced a pattern of tissue composition very similar to immediate clamping. Tissue urea content was not significantly different in the two protocols and only minor differences in sodium and water content were noted. Thus, under these experimental conditions, VE-induced natriuresis can be dissociated from medullary urea washout, and other mechanisms must be invoked to explain the increased sodium excretion.


1990 ◽  
Vol 210 ◽  
Author(s):  
Claude Delmas

AbstractChimie douce reactions (hydrolysis and reduction) from layered oxides : NaNiO2, NaxCoO2 and NaNil-xCoxO2 lead to numerous oxyhydroxides and hydroxides which differ by the composition of the intersheet space.According to the experimental conditions of the hydrolysis reaction, the oxyhydroxides can be unhydrated or intercalated with one or two layers of water molecules. From the most hydrated phases, the other ones can be obtained by chemical, thermal and even mechanical treatment.The reduction of Co-substituted nickel oxyhydroxides leads to hydroxides in which nickel and cobalt ions are respectively divalent and trivalent. In order to compensate the excess of positive charge in the (Ni, Co)O2 sheet, anions (OH-, CO32-, SO42-, NO3-) are inserted in the Van der Waals gap.For the highest anion amounts, well ordered α*-type materials are obtained. Water molecules are simultaneously inserted in the interslab space. Their structure is strongly related to the hydrotalcite one. When the amouit of anions in the intersheet space is not sufficient, interstratified materials are obtained. In this case the (Ni,Co)(OH)2 slabs are separated by a layer of CO32- anions and water molecules (α*-type) or by an empty Van der Waals gap (β(II)-type). The amount of α*-type planes in the structure increases with the cobalt amount. All these materials have been characterized by IR spectroscopy which allows to detect the existence of two types of O-H bonds (free in α*-type plane or hydrogen bonded in ²(II)-type plane).


2001 ◽  
Vol 280 (3) ◽  
pp. F396-F405 ◽  
Author(s):  
Maria Ohlson ◽  
Jenny Sörensson ◽  
Börje Haraldsson

We have analyzed glomerular sieving data from humans, rats in vivo, and from isolated perfused rat kidneys (IPK) and present a unifying hypothesis that seems to resolve most of the conflicting results that exist in the literature. Particularly important are the data obtained in the cooled IPK, because they allow a variety of experimental conditions for careful analysis of the glomerular barrier; conditions that never can be obtained in vivo. The data strongly support the classic concept of a negative charge barrier, but separate components seem to be responsible for charge and size selectivity. The new model is composed of a dynamic gel and a more static membrane layer. First, the charged gel structure close to the blood compartment has a charge density of 35–45 meq/l, reducing the concentration of albumin to 5–10% of that in plasma, due to ion-ion interactions. Second, the size-selective structure has numerous functional small pores (radius 45–50 Å) and far less frequent large pores (radius 75–115 Å), the latter accounting for 1% of the total hydraulic conductance. Both structures are required for the maintenance of an intact glomerular barrier.


2000 ◽  
Vol 65 (12) ◽  
pp. 839-846
Author(s):  
Jasmina Nikolic ◽  
Gordana Uscumlic ◽  
Vera Krstic

Rate constants for the reaction of diazodiphenylmethane with cyclohex-1-enylcarboxylic acid and 2-methylcyclohex-1-enylcarboxylic acid were determined in nine aprotic solvents, as well as in seven protic solvents, at 30?C using the appropriate UV-spectroscopic method. In protic solvents the unsubsituted acid displayed higher reaction rates than the methyl-substituted one. The results in aprotic solvents showed quite the opposite, and the reaction rates were considerably lower. In order to explain the obtained results through solvent effects, reaction rate constants (k) of the examined acids were correlated using the total solvatochromic equation of the form: log k=logk0+s?*+a?+b?, where ?* is the measure of the solvent polarity, a represents the scale of the solvent hydrogen bond donor acidities (HBD) and b represents the scale of the solvent hydrogen bond acceptor basicities (HBA). The correlation of the kinetic data were carried out by means of multiple linear regression analysis and the opposite effects of aprotic solvents, as well as the difference in the influence of protic and aprotic solvents on the reaction of the two examined acids with DDM were discussed. The results presented in this paper for cyclohex-1-enylcarboxylic and 2-methylcyclohex-1-enylcarboxylic acids were compared with the kinetic data for benzoic acid obtained in the same chemical reaction, under the same experimental conditions.


Sign in / Sign up

Export Citation Format

Share Document