scholarly journals Making matters of fraud: Sociomaterial technology in the case of Hwang and Schatten

2020 ◽  
Vol 58 (4) ◽  
pp. 393-416
Author(s):  
Buhm Soon Park

This paper revisits the “Hwang case,” which shook Korean society and the world of stem cell research in 2005 with the fraudulent claim of creating patient-specific embryonic stem cells. My goal is to overcome a human-centered, Korea-oriented narrative, by illustrating how materials can have an integral role in the construction and judgment of fraud. To this end, I pay attention to Woo Suk Hwang’s lab at Seoul National University as a whole, including human and nonhuman agents, that functioned as what I call sociomaterial technology, and Gerald P. Schatten at the University of Pittsburgh, Hwang’s collaborator, who played a crucial role in demonstrating the potency of this technology to the members of the scientific community. By recasting the whole event as the “case of Hwang and Schatten,” I argue that fraud is, like all knowledge claims, a sociotechnical construct, and that matters of fraud are locally judged. Fraud leaves its mark on materials, but I show that material evidence alone never tells the whole story and instead can be used to limit the range of responsibility.

Author(s):  
Tristan H. Lambert

Glenn M. Samm is at the University of British Columbia reported (Angew. Chem. Int. Ed. 2012, 51, 10804) the photofluorodecarboxylation of aryloxyacids such as 1 using Selectfluor 2. Jean-François Paquin at the Université Laval found (Org. Lett. 2012, 14, 5428) that the halogenation of alcohols (e.g., 4 to 5) could be achieved with [Et2NSF2]BF4 (XtalFluor-E) in the presence of the appropriate tetraethylammonium halide. A method for the reductive bromination of carboxylic acid 6 to bromide 7 was developed (Org. Lett. 2012, 14, 4842) by Norio Sakai at the Tokyo University of Science. Professor Sakai also reported (Org. Lett. 2012, 14, 4366) a related method for the reductive coupling of acid 8 with octanethiol to produce thioether 9. The esterification of primary alcohols in water-containing solvent was achieved (Org. Lett. 2012, 14, 4910) by Michio Kurosu at the University of Tennessee Health Science Center using the reagent 11, such as in the conversion of alcohol 10 to produce 12 in high yield. Hosahudya N. Gopi discovered (Chem. Commun. 2012, 48, 7085) that the conversion of thioacid 13 to amide 14 was rapidly promoted by CuSO4. A ruthenium-catalyzed dehydrative amidation procedure using azides and alcohols, such as the reaction of 15 with phenylethanol to produce 16, was reported (Org. Lett. 2012, 14, 6028) by Soon Hyeok Hong at Seoul National University. An alternative oxidative amidation was developed (Tetrahedron Lett. 2012, 53, 6479) by Chengjian Zhu at Nanjing University and the Shanghai Institute of Organic Chemistry who utilized catalytic tetrabutylammonium iodide and disubstituted formamides to convert alcohols such as 17 to amides 18. A redox catalysis strategy was developed (Angew. Chem. Int. Ed. 2012, 51, 12036) by Brandon L. Ashfeld at Notre Dame for the triphenylphosphine-catalyzed Staudinger ligation of carboxylic acid 19 to furnish amide 20. For direct catalytic amidation of carboxylic acids and amines such as in the conversion of 21 to 23, Dennis G. Hall at the University of Alberta reported (J. Org. Chem. 2012, 77, 8386) that the boronic acid 22 was a highly effective catalyst that operated at room temperature.


Author(s):  
Douglass F. Taber

Shaorong Yang and Huanfeng Jiang of the South China University of Technology assembled (Angew. Chem. Int. Ed. 2014, 53, 7219) the β-lactone 3 by the Pd-catalyzed addition of 2 to the alkyne 1. Jack R. Norton of Columbia University observed (J. Am. Chem. Soc. 2015, 137, 1036) that the vanadium-mediated reduc­tive cyclization of 4 proceeded by a free radical mechanism, leading to the cis 3,4-disubstituted tetrahydrofuran 5. The cyclization of 6 to 7 developed (J. Org. Chem. 2015, 80, 965) by Glenn M. Sammis of the University of British Columbia also involved H atom transfer. Amy R. Howell of the University of Connecticut devised (J. Org. Chem. 2015, 80, 5196) the ring expansion of the β-lactone 8 to the tet­rahydrofuran 9. Dmitri V. Filippov and Jeroen D. C. Codée of Leiden University showed (J. Org. Chem. 2015, 80, 4553) that the net reductive alkylation of the lac­tone 10 led to 11 with high diastereocontrol. A. Stephen K. Hashmi of the Ruprecht-Karls-Universität Heidelberg optimized (Chem. Eur. J. 2015, 21, 427) the gold-mediated rearrangement of the ester 12 to the lactone 13. This reaction apparently proceeded by the coupling of the metalated lac­tone with a propargylic carbocationic species. Benjamin List of the Max-Planck-Institut für Kohlenforschung developed (Angew. Chem. Int. Ed. 2015, 54, 7703) an organocatalyst that mediated the addition of 15 to 14, leading to 16 in high ee. Scott E. Denmark of the University of Illinois published (Nature Chem. 2015, 6, 1056) a detailed study of the enantioselective cyclization of 17 to 18. Shunichi Hashimoto of Hokkaido University established (Tetrahedron Lett. 2015, 56, 1397) that his catalyst was effective for the cycli­zation of 19 to 20. Debendra K. Mohapatra of the Indian Institute of Chemical Technology showed (J. Org. Chem. 2015, 80, 1365) that allyl trimethylsilane could trap the intermediate from the cyclization of 21, leading to 22 with high diastereocontrol. Young-Ger Suh of Seoul National University used (Chem. Commun. 2015, 51, 9026) a Pd catalyst to cyclize 23 to (−)-deguelin 24. John Montgomery of the University of Michigan showed (Org. Lett. 2015, 17, 1493) that the Ni-catalyzed reduc­tive cyclization of 25 to 26 proceeded with high diastereoselectivity.


Author(s):  
Douglass F. Taber

Clemens Krempner of Texas Tech University devised (Chem. Eur. J. 2014, 20, 14959) a very active Al catalyst for the Meerwein-Ponndorf-Verley reduction of a ketone 1 to the alcohol 2. Louis Fensterbank and Cyril Ollivier of UMPC and Jean-Philippe Goddard of the Université de Haute-Alsace showed (Adv. Synth. Catal. 2014, 356, 2756) that visible light could mediate the reduction of the O-thiocarbamate 3 to 4. Soon Hyeok Hong of Seoul National University used (Org. Lett. 2014, 16, 4404) hydrogen from the diol 6 to reduce the nitrile 5, leading directly to the protected amine 7. Alex Adronov of McMaster University (J. Org. Chem. 2014, 79, 7728) and Thibault Cantat of Gif- sur-Yvette (Chem. Commun. 2014, 50, 9349) observed that an aryl amide 8 could be reduced to the amine 9 under conditions that left alkyl amides unchanged. Paul J. Chirik of Princeton University developed (J. Am. Chem. Soc. 2014, 136, 13178) a Co catalyst for the alcohol- directed reduction of a proximal alkene, converting 10 selectively to 11. Yoichiro Kuninobu and Motomu Kanai of the University of Tokyo used (Synlett 2014, 25, 1869) stoichiometric Mo(CO)₆ to desulfurize 12 to 13. Utpal Bora of Tezpur University oxidized (Tetrahedron Lett. 2014, 55, 5029) the alcohol 14 to the aldehyde 15 with t-butyl hydroperoxide, using the inexpensive and reusable VOSO₄ as the catalyst. The oxidation of an alcohol to the acid is often car­ried out in two steps, alcohol to aldehyde and aldehyde to carboxylic acid. Kenneth B. Wagener of the University of Florida developed (Tetrahedron Lett. 2014, 55, 4452) a protocol for the direct oxidation of an alcohol 16 to the acid 17. Prodeep Phukan of Gauhati University devised (Tetrahedron Lett. 2014, 55, 5358) a catalyst-free procedure for the oxidation of a primary alcohol 18 to the ester 19. The aldehyde cor­responding to 18 (not illustrated) was also efficiently oxidized to 19. Katsuhiko Moriyama and Hideo Togo of Chiba University effected (Org. Lett. 2014, 16, 3812) the oxidative debenzylation of 20 to the ketone 21.


2018 ◽  
Vol 6 (11) ◽  
pp. 271
Author(s):  
Robert Smith

Journal of Education and Training Studies (JETS) would like to acknowledge the following reviewers for their assistance with peer review of manuscripts for this issue. Many authors, regardless of whether JETS publishes their work, appreciate the helpful feedback provided by the reviewers. Their comments and suggestions were of great help to the authors in improving the quality of their papers. Each of the reviewers listed below returned at least one review for this issue.Reviewers for Volume 6, Number 11Adalberto Felipe Martinez, Federal University of São Carlos, BrazilAngel H. Y. Lai, Hong Kong Baptist University, Hong KongBenmarrakchi Fatimaezzahra, Chouaib Doukkali University, MoroccoBrenda L. Shook, National University, USACagla Atmaca, Pamukkale University, TurkeyChosang Tendhar, Long Island University (LIU), USACynthia M. Compton, Wingate University, USAEnisa Mede,Bahcesehir University,TurkeyErica D. Shifflet-Chila, Michigan State University, USAFroilan D. Mobo, Philippine Merchant Marine Academy, PhilippineHelena Reis, Polytechnic Institute of Leiria, PortugalHyesoo Yoo, Virginia Tech., USAIntakhab Khan, King Abdulaziz University, Saudi ArabiaJohn Bosco Azigwe, Bolgatanga Polytechnic, GhanaJohn Cowan, Edinburgh Napier University, UKJon S. Turner, Missouri State University, USAJonathan Chitiyo, University of Pittsburgh Bradford, USALorna T. Enerva, Polytechnic University of the Philippines, PhilippinesMan-fung Lo, The Hong Kong Polytechnic University, Hong KongMarcie Zaharee, The MITRE Corporation, USAMaurizio Sajeva, Pellervo Economic Research PTT, FinlandMehmet Inan, Marmara University, TurkeyMin Gui, Wuhan University, ChinaNicole Celestine, The University of Western Australia, AustraliaSadia Batool, Preston University Islamabad, PakistanSamad Mirza Suzani, Islamic Azad University, IranSandro Sehic, Oneida BOCES, USASelloane Pitikoe, University of Kwazulu-Natal, South AfricaSenem Seda Şahenk Erkan, Marmara University, TurkeyShu-wen Lin, Sojo University, JapanStamatis Papadakis, University of Crete, GreeceThomas K. F. Chiu, The University of Hong Kong, Hong KongRobert SmithEditorial AssistantOn behalf of,The Editorial Board of Journal of Education and Training StudiesRedfame Publishing9450 SW Gemini Dr. #99416Beaverton, OR 97008, USAURL: http://jets.redfame.com


PEDIATRICS ◽  
1960 ◽  
Vol 26 (4) ◽  
pp. 696-699
Author(s):  
Eldon B. Berglund

In The spring of 1959, Dr. John Anderson, Professor of Pediatrics at the University of Minnesota, asked me to go to Korea as adviser in pediatrics to Seoul National University. The University of Minnesota has a contract with the United States Operations Mission (USOM) to help rehabilitate Seoul National University in the schools of Agriculture, Public Administration, Engineering and Medicine. This contract has been in effect since 1954, has involved the spending of several millions of dollars, the sending of medical advisers from Minnesota to Seoul and of medical participants, as they are called, from Seoul National University (SNU) to the University of Minnesota.


Author(s):  
Douglass F. Taber

Xiangge Zhou of Sichuan University showed (Tetrahedron Lett. 2011, 52, 318) that even the monosubstituted alkene 1 was smoothly converted to the methyl ether 2 by catalytic FeCl3. Brian C. Goess of Furman University protected (J. Org. Chem. 2011, 76, 4132) the more reactive alkene of 3 as the 9-BBN adduct, allowing selective reduction of the less reactive alkene to give, after reoxidation, the monoreduced 4. Nobukazu Taniguchi of the Fukushima Medical University added (Synlett 2011, 1308) Na p-toluenesulfinate oxidatively to 1 to give the sulfone 5. Krishnacharya G. Akamanchi of the Indian Institute of Chemical Technology, Mumbai oxidized (Synlett 2011, 81) 1 directly to the bromo ketone 6. Osmium is used catalytically both to effect dihydroxylation, to prepare 8, and to mediate oxidative cleavage, as in the conversion of 7 to the dialdehyde 9. Ken-ichi Fujita of AIST Tsukuba devised (Tetrahedron Lett. 2011, 52, 3137) magnetically retrievable osmium nanoparticles that can be reused repeatedly for the dihydroxylation. B. Moon Kim of Seoul National University established (Tetrahedron Lett. 2011, 52, 1363) an extraction scheme that allowed the catalytic Os to be reused repeatedly for the oxidative cleavage. Maurizio Taddei of the Università di Siena showed (Synlett 2011, 199) that aqueous formaldehyde could be used in place of Co/H2 (syngas) for the formylation of 1 to 10. Hirohisa Ohmiya and Masaya Sawamura of Hokkaido University prepared (Org. Lett. 2011, 13, 1086) carboxylic acids (not illustrated) from alkenes using CO2. Joseph M. Ready of the University of Texas Southwestern Medical Center selectively arylated (Angew. Chem. Int. Ed. 2011, 50, 2111) the homoallylic alcohol 11 to give 12. Many reactions of alkenes are initiated by hydroboration, then conversion of the resulting alkyl borane. Hiroyuki Kusama of the Tokyo Institute of Technology photolyzed (J. Am. Chem. Soc. 2011, 133, 3716) 14 with 13 to give the ketone 15. William G. Ogilvie of the University of Ottawa added (Synlett 2011, 1113) the 9-BBN adduct from 1 to 16 to give 17. Professors Ohmiya and Sawamura effected (Org. Lett. 2011, 13, 482) a similar conjugate addition, not illustrated, of 9-BBN adducts to α,β-unsaturated acyl imidazoles.


2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Hui Wang ◽  
Cun Yu

EditorialMajor developments were made recently in both VR (virtual reality) and AR (augmented reality) technologies, which became the focus of attention. In recent years, MR (mixed reality) technology has also emerged, and optical components play an irreplaceable role in these technologies.Professor Byoungho Lee, who graduated from the University of California at Berkeley and currently works at Seoul National University in South Korea, has been committed to the development of optical components used in VR and AR technologies. As a pioneer of optical electronics in Korea, he is involved in various well-known academic organizations in the optical field, such as the Optica, SPIE, and IEEE, as well as serving as the president of the Optical Society of Korea, leading the direction of the development of optical industry in Korea. As the ambassador of China-Korea Optoelectronics Exchange, Prof. Lee has also played an active role in Chinese optical events and activities. Over the years, he and the Journal Light: Science & Applications (LIGHT) have made progress together and have both made their names in the vast field of optoelectronics.So where did the story between Prof. Lee and the LIGHT journal begin? And what kind of link does the professor have with Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP)? How did he become a pioneer in optoelectronics technology? These are the questions we are eager to ask Prof. Byoungho Lee.The future cannot be predicted, but it can be invented, said Dennis Gabor who had invented holography. The pace of human technological advancements has never stopped. Who is to say that we cannot take a virtual tour of the Palace Museum or explore the north and south poles in the future? Scientists like Prof. Lee are working hard to use technology to provide mankind with an intelligent lifestyle, and lead a new technological trend. I am sure we are all looking forward to it.


Author(s):  
Douglass F. Taber

Andreas Pfaltz of the University of Basel and Keisuke Suzuki of the Tokyo Institute of Technology showed (Angew. Chem. Int. Ed. 2010, 49, 881) that the iodohydrin of 1 did not interfere with the enantioselective hydrogenation. J. R. Falck of UT Southwestern developed (J. Am. Chem. Soc. 2010, 132, 2424) a procedure for coupling arene boronic acids with a cyano triflate 3, readily available in high ee from the corresponding aldehyde. Anita R. Maguire of University College Cork devised (J. Am. Chem. Soc. 2010, 132, 1184) a Cu catalyst for the enantioselective C-H insertion cyclization of 5 to 6. Jin-Quan Yu of Scripps/La Jolla established (J. Am. Chem. Soc. 2010, 132, 460) a complementary enantioselective C-H functionalization protocol, converting the prochiral 7 into 8 in high ee. Xumu Zhang of Rutgers University effected (Angew. Chem. Int. Ed. 2010, 49, 4047) enantioselective branching hydroformylation of 9 to give 10. T. V. RajanBabu of Ohio State University established (J. Am. Chem. Soc. 2010, 132, 3295) the enantioselective hydrovinylation of a diene 11 to the diene 12. Gregory C. Fu extended (J. Am. Chem. Soc. 2010, 132, 1264, 5010) Ni-mediated cross-coupling, both with alkenyl and aryl nucleophiles, to the racemic bromoketone 13. Hyeung-geun Park and Sang-sup Jew of Seoul National University used (Organic Lett. 2010, 12 , 2826) their asymmetric phase transfer protocol to effect the enantioselective alkylation of the amide 15. Kyung Woon Jung of the University of Southern California showed (J. Org. Chem. 2010, 75, 95) that the oxidative Pd-mediated Heck coupling of arene boronic acids to 17 could be effected in high ee. Nicolai Cramer of ETH Zurich observed (J. Am. Chem. Soc. 2010, 132, 5340) high enantioinduction in the cleavage of the prochiral cyclobutanol 19. Alexandre Alexakis of the University of Geneva achieved (Organic Lett. 2010, 12, 1988) the long-sought goal of efficient enantioselective conjugate addition of a Grignard reagent to an unsaturated aldehyde 21. Professor Alexakis also established (Organic Lett. 2010, 12, 2770) conditions for enantioselective conjugate addition to a nitrodiene 23. This procedure worked equally well for β-alkynyl nitroalkenes.


Author(s):  
Douglass F. Taber

Alois Fürstner of the Max-Planck-Institut Mülheim devised (Angew. Chem. Int. Ed. 2013, 52, 14050) a Ru catalyst for the trans- selective hydroboration of an alkyne 1 to 2. Qingbin Liu of Hebei Normal University and Chanjuan Xi of Tsinghua University coupled (Org. Lett. 2013, 15, 5174) the alkenyl zirconocene derived from 3 with an acyl azide to give the amide 4. Chulbom Lee of Seoul National University used (Angew. Chem. Int. Ed. 2013, 52, 10023) a Rh catalyst to convert a terminal alkyne 5 to the ester 6. Laura L. Anderson of the University of Illinois, Chicago devised (Org. Lett. 2013, 15, 4830) a protocol for the conversion of a ter­minal alkyne 7 to the α-amino aldehyde 9. Dewen Dong of the Changchun Institute of Applied Chemistry developed (J. Org. Chem. 2013, 78, 11956) conditions for the monohydrolysis of a bis nitrile 10 to the monoamide 11. Aiwen Lei of Wuhan University optimized (Chem. Commun. 2013, 49, 7923) a Ni catalyst for the conversion of the alkene 12 to the enamide 13. Kazushi Mashima of Osaka University optimized (Adv. Synth. Catal. 2013, 355, 3391) a boronic ester catalyst for the conversion of an amide 14 to the ester 15. Jean- François Paquin of the Université Laval prepared (Eur. J. Org. Chem. 2013, 4325) the amide 17 by coupling an amine with the activated intermediate from reaction of an acid 16 with Xtal- Fluor E. Steven Fletcher of the University of Maryland School of Pharmacy designed (Tetrahedron Lett. 2013, 54, 4624) the azodicarbonyl dimorpholide 18 as a reagent for the Mitsunobu coupling of 19 with 20. The reduced form of 18 was readily separated by extraction into water and reoxidized. Jens Deutsch of the Universität Rostock found (Chem. Eur. J. 2013, 19, 17702) simple ligands for the Ru-mediated borrowed hydro­gen conversion of an alcohol 22 to the amine 23. Ronald T. Raines of the University of Wisconsin devised (J. Am. Chem. Soc. 2013, 135, 14936) a phosphinoester for the efficient conversion in water of an azide 24 to the diazo 25.


Sign in / Sign up

Export Citation Format

Share Document