scholarly journals Psychiatric Disorders after Transurethral Resection of the Prostate

1998 ◽  
Vol 91 (1) ◽  
pp. 13-15 ◽  
Author(s):  
Rosemary Lethem ◽  
Gianetta Rands

Three men in their 70s had long-term changes in mood and personality dating from immediately after transurethral prostatectomy. Focal abnormalities in the brain were not detected. The possibility of psychiatric as well as cardiovascular sequelae from this operation deserves investigation.

1998 ◽  
Vol 32 (1) ◽  
pp. 119-128 ◽  
Author(s):  
Bruce D. Gynther ◽  
Mike B. Calford ◽  
Pankaj Sah

Objective: There is increasing concern that the course of psychiatric disorders may be affected by parameters such as the duration and intensity of symptoms of initial episodes of illness. As this indicates that abnormal function produces long-term changes within the brain, a review of the neuroscience literature regarding neuroplasticity is warranted. Method: This article is a selective review, focusing in particular on results obtained from physiological experiments assessing plasticity within the mammalian neocortex. The possible relevance of results to psychiatry is discussed. Results: While the most dramatic examples of neuroplasticity occur during a critical period of neural development, neuroplasticity can also occur in adult neocortex. Neuroplasticity appears to be activity-dependent: synaptic pathways that are intensively used may become strengthened, and conversely, there may be depression of transmission in infrequently used pathways. Conclusions: Results from neurophysiological experiments lend support to the clinical observation that the intensity and duration of a psychiatric disorder may adversely alter its long-term course. Rapid aggressive treatment may prevent this from occurring. While pharmacotherapy may reduce the duration and severity of symptoms, it may also have an independent, as yet unknown, effect on neuroplasticity.


2020 ◽  
Author(s):  
Attilio Iemolo ◽  
Aisha Nur ◽  
Patricia Montilla-Perez ◽  
Victoria B Risbrough ◽  
Francesca Telese

AbstractHeavy and frequent use of cannabis during adolescence increases the risk of developing psychiatric disorders. However, the neurobiological mechanisms underlying this vulnerability remain largely unknown. Here, we explore whether adolescent vulnerability to long-term behavioral effects of cannabis is modulated by Reelin, a gene implicated in the development of the brain and of psychiatric disorders. To this aim, heterozygous Reeler (HR) mice, that express reduced level of Reelin, were chronically exposed during adolescence to high doses (10mg/kg) of Δ9-tetrahydrocannabinol (THC), a major psychoactive component of cannabis. Mice were tested in early adulthood with multiple behavioral assays, including working memory, social interaction, locomotor activity, anxiety-like responses, stress reactivity, and pre-pulse inhibition. Compared to wild-type (WT), HR mice treated with THC showed impaired social behaviors, elevated disinhibitory phenotypes and increased responsiveness to aversive situations, in a sex-specific manner. Independent of THC exposure, HR mice also spent more time exploring unfamiliar objects, indicating that Reelin modulates novelty seeking behavior. To identify the neuronal ensemble underlying this elevated novelty seeking in HR mice, we mapped the regional brain expression of the immediate early gene, Fos, in mice exposed to novel objects. HR mice exhibited reduced neuronal activation in the lateral septum, a subcortical brain structure implicated in emotions, cognition and reward processes. Overall, these findings show that (1) Reelin deficiency influences behavioral abnormalities caused by heavy consumption of THC during adolescence, and (2) that Reelin plays a role in the neurobiological mechanisms underlying disinhibitory behaviors, such as novelty seeking.Significant StatementThe link between cannabis abuse and the development psychiatric disorders, especially in adolescents, makes understanding the neurobiological mechanisms underlying cannabis effects on the brain a significant biomedical problem. Reelin is a key signaling molecule in the development of the adolescent brain and of psychiatric disorders, but its role in modulating the behavioral changes induced by cannabis remain unknown. Here, we report an interaction between Reelin deficiency and chronic adolescent exposure to THC, a major psychoactive component of cannabis. This interaction led to cognitive deficits, disinhibitory behaviors and altered emotional reactivity in mice, in a sex-specific manner. These experiments are the first to establish a link between Reelin signaling and the endocannabinoid system targeted by THC.


2020 ◽  
pp. 127-154
Author(s):  
Daeyeol Lee

Long-lasting effects of brief sensory experience must be mediated by long-term changes in the strength of connections between neurons in the brain. This phenomenon is known as synaptic plasticity, and the physical location of such change is referred to as the engram. This chapter illustrates how multiple learning and memory systems might be implemented in different anatomical modules of the brain and what role dopamine plays in learning. Most of these neurobiological and behavioral observations can be accounted for by reinforcement learning theory. The goal of reinforcement is to understand how utilities must be altered by experience so that rational choices based on the utility functions can result in the most desirable outcomes through learning.


Author(s):  
Sahib S. Khalsa ◽  
Justin S. Feinstein

A regulatory battle for control ensues in the central nervous system following a mismatch between the current physiological state of an organism as mapped in viscerosensory brain regions and the predicted body state as computed in visceromotor control regions. The discrepancy between the predicted and current body state (i.e. the “somatic error”) signals a need for corrective action, motivating changes in both cognition and behavior. This chapter argues that anxiety disorders are fundamentally driven by somatic errors that fail to be adaptively regulated, leaving the organism in a state of dissonance where the predicted body state is perpetually out of line with the current body state. Repeated failures to quell somatic error can result in long-term changes to interoceptive circuitry within the brain. This chapter explores the neuropsychiatric sequelae that can emerge following chronic allostatic dysregulation of somatic errors and discusses novel therapies that might help to correct this dysregulation.


Author(s):  
Владислав Александрович Шварц ◽  
Марина Станиславовна Кудабаева ◽  
Илья Леонидович Губский ◽  
Дарья Дмитриевна Наместникова ◽  
Марина Юрьевна Ходанович

В исследовании изучалась динамика объема ишемического очага и объемов полушарий мозга у животных с локальной ишемией в течении 2 месяцев после ишемии при помощи ручной сегментации. Были выявлены значимые различия между объемами полушарий на 1, 3, 14, 21, 30, 42 день исследования (p<0,01-0,05),, а также резкий рост объема ишемического поражения в течение 1-3 суток, после чего его объем монотонно уменьшался. Ischemic lesion volume and the brain hemisphere volume long-term changes were evaluated during 2 month after focal ischemia in rats using manual segmentation,. Significant differences were identified between hemisphere volumes on the 1st, 3rd, 14th, 21st, 30th, 42nd day after ischemia (p<0,01-0,05). A sharp increase in volume ischemic lesion was identified from the 1st till the 3rd day, then lesion volume constantly decreased.


1997 ◽  
Vol 77 (1) ◽  
pp. 1-20 ◽  
Author(s):  
I. Diamond ◽  
A. S. Gordon

Recent advances in neuroscience have made it possible to investigate the pathophysiology of alcoholism at a cellular and molecular level. Evidence indicates that ethanol affects hormone- and neurotransmitter-activated signal transduction, leading to short-term changes in regulation of cellular functions and long-term changes in gene expression. Such changes in the brain probably underlie many of the acute and chronic neurological events in alcoholism. In addition, genetic vulnerability also plays a role in alcoholism and, perhaps, in alcoholic medical disorders.


Author(s):  
Anne E. Berens ◽  
Sarah K. G. Jensen ◽  
Charles A. Nelson

This chapter begins by providing a basic overview of how the brain develops, starting with conception and continuing through adolescence. It emphasizes the experience-dependent nature of development and discusses how experience “cuts both ways.” Positive experiences can exert a healthy impact on development, whereas exposure to adverse experiences can have a deleterious impact on development. The chapter draws upon studies of both animals and humans. It pays particular attention to the range of adverse experiences that can selectively impact different aspects of brain and behavioral development, such as the effects of stress or neglect. The chapter then turns to how such experiences can become biologically embedded, leading to long-term changes in both biological and psychological development. The chapter concludes by discussing the implications such knowledge has for the law.


Sign in / Sign up

Export Citation Format

Share Document