Energy management and damping improvement of a DC microgrid with constant power load using interconnection and damping assignment-passivity based control

Author(s):  
Soumya Samanta ◽  
Saumitra Barman ◽  
Jyoti Prakash Mishra ◽  
Prasanta Roy ◽  
Binoy Krishna Roy

This paper deals with (i) damping improvement and (ii) energy management of a DC microgrid for improvement of its stability. The direct current (DC) microgrid has a solar-photovoltaic system as a renewable source and fuel cell-battery combination as a backup system to supply power to constant power loads (CPLs). The presence of CPLs in a DC microgrid makes the stability problem more challenging since the negative impedance characteristics of CPLs bring instability into the system. A control approach using interconnection and damping assignment-passivity based control (IDA-PBC) is proposed in this paper to address both the objectives. The proposed control approach provides an efficient energy management, the required damping and also maintains the stability by making the system passive. The tuning parameters of the control laws are adapted incorporating the state of charge (SoC) for the effective energy management. In addition, an integral action is added with the proposed control laws to eliminate the steady-state error in the voltage level of the DC bus and load bus. The proposed IDA-PBC control along with an integral action is compared with four other control approaches, and reveals its better performances. The MATLAB/Simulink results show that the proposed control technique provides better responses in terms of providing damping and effective energy management.

2020 ◽  
Vol 14 (11) ◽  
pp. 2082-2091 ◽  
Author(s):  
Soumya Samanta ◽  
Saumitra Barman ◽  
Jyoti Prakash Mishra ◽  
Prasanta Roy ◽  
Binoy Krishna Roy

2022 ◽  
Vol 12 (1) ◽  
pp. 11
Author(s):  
Sajid Ali Murtaza ◽  
Nazam Siddique ◽  
Javaid Aslam ◽  
Waqas Latif ◽  
Muhammad Wasif ◽  
...  

The AC power system is leading due to its established standards. The depleting thread of fossil fuels, the significant increase in cost and the alarming environmental situation raises concerns. An Islanded DC microgrid, due to its novel characteristics of being able to withstand faulty conditions, has increased the reliability, accuracy, ease of integration, and efficiency of the power system. Renewable energy sources, characteristically DC, have wide usability in a distributive network and, accordingly, less circuitry and conversion stages are required, eliminating the need of reactive power compensation and frequency sync. Constant power loads (CPLs) are the reason for instability in the DC microgrid. Various centralized stability techniques have been proposed in the literature; however, the grid system collapses if there is a fault. To compensate, an efficient distributive control architecture, i.e., droop control method is proposed in this research. The significant advantage of using the droop control technique includes easy implementation, high reliability and flexibility, a reduced circulating current, a decentralized control with local measurements, the absence of a communication link and, thus, it is economic. Moreover, it offers local control for each individual power source in the microgrid. To investigate the stability of the islanded DC microgrid with constant power loads using the droop control technique, a small signal model of the islanded DC microgrid was developed in MATLAB/Simulink. Simulations were carried out to show the efficiency of the proposed controller and analyze the stability of the power system with constant power loads.


Author(s):  
Xiao Lin Ai ◽  
Jian Qiao Yu ◽  
Yong Bo Chen ◽  
Fang Zheng Chen ◽  
Yuan Chuan Shen

This paper investigates the formation control problem of multiple unmanned aerial vehicles (UAVs) with limited communication in a known and realistic obstacle-laden environment. In order to deal with the limited communication constraints, the leader–follower strategy and the virtual leader strategy are integrated into an optimal control framework to formulate this formation control problem. This combination formation framework can be achieved by integrating a redefined directed graph and a proposed information vector. In more practical applications, an obstacle/collision avoidance strategy is achieved by constructing a non-quadratic cost function innovatively using a virtual flow field approach. The proposed optimal control laws, which derive from the local information rather than the global information, are proved to guarantee the stability of the close-loop system by an inverse optimal control approach. The simulation results demonstrate the effectiveness of the formation flight of multiple UAVs with limited communication in an obstacle-laden environment.


Author(s):  
O. Gehan ◽  
E. Pigeon ◽  
T. Menard ◽  
M. Pouliquen ◽  
H. Gualous ◽  
...  

This paper investigates the control problem for static boost type converters using a high gain state feedback robust controller incorporating an integral action. The robust feature allows to achieve the required performance in the presence of parametric uncertainties, while the integral action provides an offset free performance with respect to the desired levels of voltage. The adopted high gain approach is motivated by both fundamental as well as practical considerations, namely the underlying fundamental potential and the design parameter specification simplicity. The stability and convergence analysis has been carried out using an adequate Lyapunov approach, and the control system calibration is achieved throughout a few design parameters which are closely related to the desired dynamical performances. The effectiveness of the proposed control approach has been corroborated by numerical simulations and probing experimental results.


Author(s):  
Yasmine IHEDRANE ◽  
Chakib El Bekkali ◽  
Madiha El Ghamrasni ◽  
Sara Mensou ◽  
Badre Bossoufi

<p>This article, present a new contribution to the control of wind energy systems, a robust nonlinear control of active and reactive power with the use of the Backstepping and Sliding Mode Control approach based on a doubly fed Induction Generator power (DFIG-Generator) in order to reduce the response time of the wind system. In the first step, a control strategy of the MPPT for the extraction of the maximum power of the turbine generator is presented. Subsequently, the Backstepping control technique followed by the sliding mode applied to the wind systems will be presented. These two types of control system rely on the stability of the system using the LYAPUNOV technique. Simulation results show performance in terms of set point tracking, stability and robustness versus wind speed variation. </p>


2014 ◽  
Vol 565 ◽  
pp. 98-106 ◽  
Author(s):  
Younes Al Younes ◽  
Ahmad Drak ◽  
Hassan Noura ◽  
Abdelhamid Rabhi ◽  
Ahmed El Hajjaji

This paper proposes a nonlinear control technique to control the position of the Qball-X4 quadrotor using a cascaded methodology of two Adaptive Integral Backstepping Controllers (AIBC). The nonlinear algorithm uses the principle of Lyapunov methodology in the backstepping technique to ensure the stability of the vehicle, and utilizes the integral action to eliminate the steady state error that caused by the disturbances and model uncertainties, as well as, the adaptation law will estimate the modeling errors caused by assumptions in simplifying the complexity of the quadrotor model. The algorithm goes through two stages of cascaded AIBCs; the first stage aims to stabilize the attitude and the altitude of the quadrotor, and the second stage feeds the first stage with the desired attitude values to control the position of the quadrotor.Flight test results show that the proposed algorithm is capable of controlling the position of the nonlinear quadrotor model.


2021 ◽  
Vol 13 (19) ◽  
pp. 10492
Author(s):  
Younes Zahraoui ◽  
Ibrahim Alhamrouni ◽  
Saad Mekhilef ◽  
M. Reyasudin Basir Khan ◽  
Mehdi Seyedmahmoudian ◽  
...  

As promising solutions to various social and environmental issues, the generation and integration of renewable energy (RE) into microgrids (MGs) has recently increased due to the rapidly growing consumption of electric power. However, such integration can affect the stability and security of power systems due to its complexity and intermittency. Therefore, an optimal control approach is essential to ensure the efficiency, reliability, and quality of the delivered power. In addition, effective planning of policies for integrating MGs can help promote MG operations. However, outages may render these strategies inefficient and place the power system at risk. MGs are considered an ideal candidate for distributed power systems, given their capability to restore these systems rapidly after a physical or cyber-attack and create reliable protection systems. The energy management system (EMS) in an MG can operate controllable distributed energy resources and loads in real-time to generate a suitable short-term schedule for achieving some objectives. This paper presents a comprehensive review of MG elements, the different RE resources that comprise a hybrid system, and the various types of control, operating strategies, and goals in an EMS. A detailed explanation of the primary, secondary, and tertiary levels of MGs is also presented. This paper aims to contribute to the policies and regulations adopted by certain countries, their protection schemes, transactive markets, and load restoration in MGs.


Sign in / Sign up

Export Citation Format

Share Document