Predefined-time stabilization of permanent-magnet synchronous motor

Author(s):  
Alison Garza-Alonso ◽  
Michael Basin ◽  
Pablo Rodriguez-Ramirez

This paper designs a predefined-time convergent continuous control algorithm to stabilize a permanent-magnet synchronous motor (PMSM) system. Three cases have been considered: disturbance-free, in presence of a deterministic disturbance satisfying a Lipschitz condition, and in presence of both a stochastic white noise and a deterministic disturbance satisfying a Lipschitz condition. The designed control law is free from the restrictions of exponential control growth and exact initial conditions knowledge. This is the first predefined-time convergent continuous control algorithm applied to stabilizing a PMSM system with both deterministic and stochastic disturbances, which enables one to a priori set the predefined convergence time even in presence of various disturbances of different nature. Numerical simulations are provided for a PMSM system to validate the obtained theoretical results in each of the three considered cases. The simulation results demonstrate that the employed values of the predefined-time convergent control inputs are applicable in practice.

Actuators ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 306
Author(s):  
Nain de la Cruz ◽  
Michael Basin

This paper presents a predefined-time convergent robust control algorithm that allows the control designer to set the convergence time in advance, independently of initial conditions, deterministic disturbances, and stochastic noises. The control law is consequently designed and verified by simulations for a full-scale 4-degrees-of-freedom (4D) permanent-magnet synchronous motor (PMSM) system in cases of a disturbance-free system with completely measurable states, a disturbance-free system with incompletely measurable states, a system with incompletely measurable states in the presence of deterministic disturbances, and a system with incompletely measurable states in the presence of both deterministic disturbances and stochastic noises. Numerical simulations are provided for the full-scale 4D PMSM system in order to validate the obtained theoretical results in each of the considered cases. To the best of our knowledge, this is the first attempt to design a predefined-time convergent control law for multi-dimensional systems with incompletely measurable states in the presence of both deterministic disturbances and stochastic noises.


Author(s):  
Peikun Zhu ◽  
Yong Chen ◽  
Meng Li

Aiming at the parameter uncertainty and load torque disturbance of permanent magnet synchronous motor system, a terminal sliding mode control algorithm for permanent magnet synchronous motor based on the reaching law is proposed. First, a sliding mode control algorithm for sliding mode reaching law is proposed, which can dynamically adapt to the changes in system state. Second, a sliding mode disturbance observer is designed to estimate the lumped disturbance in real time and to compensate the controller for disturbance. On this basis, an online identification method based on disturbance observer for viscous friction coefficient and moment of inertia is used to reduce the influence of parameter uncertainty on the control system. Simulation and experimental results show the effectiveness of the method.


2014 ◽  
Vol 1006-1007 ◽  
pp. 575-580
Author(s):  
Qing Xie Chen ◽  
Jing Jing Chen ◽  
Yi Biao Fan

Targeting development of control system of a permanent magnet synchronous motor applied to high precision requirement, A strategy is researched to develop a single chip with built-in sensor-less control algorithm which is used as the control core of PMSM control system, the composition of the hardware and the realization of software of the chip are designed, and the simulation experiment is carried out to verify feasibility and rationality of the control strategy as well.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 365 ◽  
Author(s):  
Hung-Khong Hoai ◽  
Seng-Chi Chen ◽  
Hoang Than

This paper presents the sensorless control algorithm for a permanent magnet synchronous motor (PMSM) drive system with the estimator and the intelligent controller. The estimator is constructed on the novel sliding mode observer (SMO) in combination with a phase-locked loop (PLL) to estimate the position and speed of the rotor. The intelligent controller is a radial basis function neural network (RBFNN)-based self-tuning PID (Proportional-Integral-Derivative) controller, applied to the velocity control loop of the PMSM drive control system to adapt strongly to dynamic characteristics during the operation with an external load. The I-f startup strategy is adopted to accelerate the motor from standstill, then switches to the sensorless mode smoothly. The control algorithm program is based on MATLAB and can be executed in simulations and experiments. The control system performance is verified on an experimental platform with various speeds and the dynamic load, in which the specified I-f startup mode and sensorless mode, inspected by tracking response and speed regulation. The simulation and experimental results demonstrate that the proposed method has worked successfully. The motor control system has smooth switching, good tracking response, and robustness against disturbance.


2014 ◽  
Vol 513-517 ◽  
pp. 863-866
Author(s):  
Bo Qu ◽  
Jing Jing Liu

This paper designs a permanent magnet synchronous motor controller based on STM32. The space vector control algorithm is introduced. The space vector control algorithm and SVPWM are realized based on STM32. The speed and current loop PID regulator can make the accurate control of permanent magnet synchronous motor. This paper presents the hardware and software design of the control system and software architecture. The result shows that the controller design is feasible and it can be widely applied to various CNS.


Author(s):  
Najmeh Movahhed Neya ◽  
Sajad Saberi ◽  
Babak Mozafari

This paper proposes a non-cascade -single loop- Direct Speed Control algorithm for surface mounted Permanent Magnet Synchronous Motor (PMSM) fed by Matrix Converter. The proposed method uses Finite Control Set Model Predictive Control (FCS-MPC) to manipulate system speed and currents simultaneously. Also, for better performance of the predictive method, an observer designed to estimate mechanical torque and other uncertain parameters of the mechanical subsystem as a lumped disturbance. Simulation results using Matlab/Simulink demonstrate the performance of proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document