Short-term load forecasting coupled with weather profile generation methodology

2017 ◽  
Vol 39 (3) ◽  
pp. 310-327 ◽  
Author(s):  
Guangya Zhu ◽  
Tin-Tai Chow ◽  
Norman Tse

Short-term building load forecasting is indispensable in daily operation of future intelligent/green buildings, particularly in formulating system control strategies and assessing the associated environmental impacts. Most previous research works have been focused on studying the advancement in forecasting techniques, but not as much on evaluating the availability of influential factors like the predicted weather profile in the coming hours. This article proposes an improved procedure to predict the building load 24 hours ahead, together with a backup weather profile generating method. The quality of the proposed weather profile generation model and the forecasting procedures were examined through a case study of application to university academic buildings. The results showed that the load forecasting accuracy with the application of either the real weather data on record or of the predicted weather data from the profile generation model is very much similar. This indicates that the weather prediction model is suitable for applying to building load forecasting. Besides, the comparisons between different sets of input data illustrated that the forecasting accuracy can be improved through the input data filtering and regrouping procedures. Practical application: A weather profile prediction technique for use in building energy forecasting was introduced. This can be coupled to a building energy use forecasting model for predicting the hourly consumption profile of the next day. This prediction time span can be crucial for formulating the daily operation plan of the utility systems or for smart micro-grid applications. The appropriateness of the methodology was evaluated through a case study.

2012 ◽  
Vol 614-615 ◽  
pp. 811-814
Author(s):  
Hong Zhang ◽  
Sheng Zhu Li ◽  
Luan Song Yue ◽  
Zhao Yu Pian

Short Term Load Forecasting is important to power system. It can be economic and reasonable to arrange start and stop of the Generator in wire net, The text adopt radial basis function neural networks. The GA-optimized multi-core radial basis function SVM is applied to extract useful data and short-term load forecasting accuracy based on RBF neural network has been improved. In this paper, The advantages of improving the algorithm is demonstrated by the application of the MATLAB simulation with the input data of the spring load collected from California, United States.


2019 ◽  
Vol 84 ◽  
pp. 01004 ◽  
Author(s):  
Grzegorz Dudek

The Theta method attracted the attention of researchers and practitioners in recent years due to its simplicity and superior forecasting accuracy. Its performance has been confirmed by many empirical studies as well as forecasting competitions. In this article the Theta method is tested in short-term load forecasting problem. The load time series expressing multiple seasonal cycles is decomposed in different ways to simplify the forecasting problem. Four variants of input data definition are considered. The standard Theta method is uses as well as the dynamic optimised Theta model proposed recently. The performances of the Theta models are demonstrated through an empirical application using real power system data and compared with other popular forecasting methods.


Author(s):  
Anindita Satria Surya ◽  
Musa Partahi Marbun ◽  
K.G.H. Mangunkusumo ◽  
Muhammad Ridwan

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4115 ◽  
Author(s):  
Vincenzo Costanzo ◽  
Gianpiero Evola ◽  
Marco Infantone ◽  
Luigi Marletta

Building energy simulations are normally run through Typical Weather Years (TWYs) that reflect the average trend of local long-term weather data. This paper presents a research aimed at generating updated typical weather files for the city of Catania (Italy), based on 18 years of records (2002–2019) from a local weather station. The paper reports on the statistical analysis of the main recorded variables, and discusses the difference with the data included in a weather file currently available for the same location based on measurements taken before the 1970s but still used in dynamic energy simulation tools. The discussion also includes a further weather file, made available by the Italian Thermotechnical Committee (CTI) in 2015 and built upon the data registered by the same weather station but covering a much shorter period. Three new TWYs are then developed starting from the recent data, according to well-established procedures reported by ASHRAE and ISO standards. The paper discusses the influence of the updated TWYs on the results of building energy simulations for a typical residential building, showing that the cooling and heating demand can differ by 50% or even 65% from the simulations based on the outdated weather file.


2020 ◽  
Vol 10 (2) ◽  
pp. 200-205
Author(s):  
Isaac Adekunle Samuel ◽  
Segun Ekundayo ◽  
Ayokunle Awelewa ◽  
Tobiloba Emmanuel Somefun ◽  
Adeyinka Adewale

2018 ◽  
Vol 11 (1) ◽  
pp. 147 ◽  
Author(s):  
Byung-Ki Jeon ◽  
Eui-Jong Kim ◽  
Younggy Shin ◽  
Kyoung-Ho Lee

The aim of this study is to develop a model that can accurately calculate building loads and demand for predictive control. Thus, the building energy model needs to be combined with weather prediction models operated by a model predictive controller to forecast indoor temperatures for specified rates of supplied energy. In this study, a resistance–capacitance (RC) building model is proposed where the parameters of the models are determined by learning. Particle swarm optimization is used as a learning scheme to search for the optimal parameters. Weather prediction models are proposed that use a limited amount of forecasting information fed by local meteorological centers. Assuming that weather forecasting was perfect, hourly outdoor temperatures were accurately predicted; meanwhile, differences were observed in the predicted solar irradiances values. In investigations to verify the proposed method, a seven-resistance, five-capacitance (7R5C) model was tested against a reference model in EnergyPlus using the predicted weather data. The root-mean-square errors of the 7R5C model in the prediction of indoor temperatures on all the specified days were within 0.5 °C when learning was performed using reference data obtained from the previous five days and weather prediction was included. This level of deviation in predictive control is acceptable considering the magnitudes of the loads and demand of the tested building.


Sign in / Sign up

Export Citation Format

Share Document