An online multi-dimensional opinion dynamic model with misinformation diffusion in emergency events

2021 ◽  
pp. 016555152097743
Author(s):  
Mengmeng Liu ◽  
Lili Rong

Multiple opinions, including many that are negative, are produced in emergency events. These opinions are commonly formed asynchronously based on misinformation. However, most researches on opinion dynamics involving information neglect the asynchronous process of initial opinion formation due to information diffusion. Since online social networks like Sina Weibo act as major avenues for the expression, after analysing online behaviours, an opinion dynamic model is developed with consideration of misinformation diffusion of public opinion. In this model, schemes are developed for opinion interactions in multiple dimensions by introducing characteristics of online communication as another way of opinion interactions besides communication between neighbours. Subsequently, we investigate the impacts of network structure, diffusion rate, repost rate and other factors, which provide insights into understanding online opinion dynamics during emergency events. Furthermore, we conduct simulations to determine the intervention effects of different official responses. Results show that removing comments compulsively exhibits better performance in reducing negative opinion as well as increasing the density of Spreaders. Debunking misinformation by posting early results officially which indicates the probability of the existence of misinformation may lead public opinion in time if it takes a long time to finally confirm the misinformation.

2011 ◽  
Vol 13 (3) ◽  
pp. 417-441 ◽  
Author(s):  
FRANCISCO FATAS-VILLAFRANCA ◽  
DULCE SAURA ◽  
FRANCISCO J. VAZQUEZ

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 105
Author(s):  
Robert Jankowski ◽  
Anna Chmiel

Modelling the epidemic’s spread on multiplex networks, considering complex human behaviours, has recently gained the attention of many scientists. In this work, we study the interplay between epidemic spreading and opinion dynamics on multiplex networks. An agent in the epidemic layer could remain in one of five distinct states, resulting in the SIRQD model. The agent’s attitude towards respecting the restrictions of the pandemic plays a crucial role in its prevalence. In our model, the agent’s point of view could be altered by either conformism mechanism, social pressure, or independent actions. As the underlying opinion model, we leverage the q-voter model. The entire system constitutes a coupled opinion–dynamic model where two distinct processes occur. The question arises of how to properly align these dynamics, i.e., whether they should possess equal or disparate timescales. This paper highlights the impact of different timescales of opinion dynamics on epidemic spreading, focusing on the time and the infection’s peak.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Letizia Milli

AbstractDuring the last decade, the advent of the Web and online social networks rapidly changed the way we were used to search, gather and discuss information of any kind. These tools have given everyone the chance to become a news medium. While promoting more democratic access to information, direct and unfiltered communication channels may increase our chances to confront malicious/misleading behavior. Fake news diffusion represents one of the most pressing issues of our online society. In recent years, fake news has been analyzed from several perspectives; among such vast literature, an important theme is the analysis of fake news’ perception. In this work, moving from such observation, I propose a family of opinion dynamics models to understand the role of specific social factors on the acceptance/rejection of news contents. In particular, I model and discuss the effect that stubborn agents, different levels of trust among individuals, open-mindedness, attraction/repulsion phenomena, and similarity between agents have on the population dynamics of news perception. To discuss the peculiarities of the proposed models, I tested them on two synthetic network topologies thus underlying when/how they affect the stable states reached by the performed simulations.


2021 ◽  
Vol 16 (2) ◽  
pp. 1-34
Author(s):  
Rediet Abebe ◽  
T.-H. HUBERT Chan ◽  
Jon Kleinberg ◽  
Zhibin Liang ◽  
David Parkes ◽  
...  

A long line of work in social psychology has studied variations in people’s susceptibility to persuasion—the extent to which they are willing to modify their opinions on a topic. This body of literature suggests an interesting perspective on theoretical models of opinion formation by interacting parties in a network: in addition to considering interventions that directly modify people’s intrinsic opinions, it is also natural to consider interventions that modify people’s susceptibility to persuasion. In this work, motivated by this fact, we propose an influence optimization problem. Specifically, we adopt a popular model for social opinion dynamics, where each agent has some fixed innate opinion, and a resistance that measures the importance it places on its innate opinion; agents influence one another’s opinions through an iterative process. Under certain conditions, this iterative process converges to some equilibrium opinion vector. For the unbudgeted variant of the problem, the goal is to modify the resistance of any number of agents (within some given range) such that the sum of the equilibrium opinions is minimized; for the budgeted variant, in addition the algorithm is given upfront a restriction on the number of agents whose resistance may be modified. We prove that the objective function is in general non-convex. Hence, formulating the problem as a convex program as in an early version of this work (Abebe et al., KDD’18) might have potential correctness issues. We instead analyze the structure of the objective function, and show that any local optimum is also a global optimum, which is somehow surprising as the objective function might not be convex. Furthermore, we combine the iterative process and the local search paradigm to design very efficient algorithms that can solve the unbudgeted variant of the problem optimally on large-scale graphs containing millions of nodes. Finally, we propose and evaluate experimentally a family of heuristics for the budgeted variant of the problem.


2008 ◽  
Vol 22 (25n26) ◽  
pp. 4482-4494 ◽  
Author(s):  
F. V. KUSMARTSEV ◽  
KARL E. KÜRTEN

We propose a new theory of the human mind. The formation of human mind is considered as a collective process of the mutual interaction of people via exchange of opinions and formation of collective decisions. We investigate the associated dynamical processes of the decision making when people are put in different conditions including risk situations in natural catastrophes when the decision must be made very fast or at national elections. We also investigate conditions at which the fast formation of opinion is arising as a result of open discussions or public vote. Under a risk condition the system is very close to chaos and therefore the opinion formation is related to the order disorder transition. We study dramatic changes which may happen with societies which in physical terms may be considered as phase transitions from ordered to chaotic behavior. Our results are applicable to changes which are arising in various social networks as well as in opinion formation arising as a result of open discussions. One focus of this study is the determination of critical parameters, which influence a formation of stable mind, public opinion and where the society is placed “at the edge of chaos”. We show that social networks have both, the necessary stability and the potential for evolutionary improvements or self-destruction. We also show that the time needed for a discussion to take a proper decision depends crucially on the nature of the interactions between the entities as well as on the topology of the social networks.


Sign in / Sign up

Export Citation Format

Share Document