Long-term model of induced canine phonation

1998 ◽  
Vol 118 (4) ◽  
pp. 512-522
Author(s):  
Randal C. Paniello ◽  
J. David Dahm

Experimental induced phonation in the dog has been used in short-term studies by several investigators and has proved quite useful in laryngeal research. In this study a long-term canine phonation model is described that uses permanently implanted electrodes on the superior and recurrent laryngeal nerves. A serial induced phonation model has not been previously reported and is needed for laryngeal research in which voice results are a primary end point. Inexpensive, reliable, nontoxic electrodes were designed and fabricated. The laryngeal nerves were found to be quite susceptible to injury, necessitating a series of changes in electrode design. Electrode durability and laryngeal nerve viability improved with each design modification; the final design gave a recurrent laryngeal nerve viability rate of 100% at 6 weeks, 83% at 9 weeks, and 73% at 12 weeks. Induced phonation was successfully produced on a repeated basis by stimulating the recurrent laryngeal nerves while passing air through the larynx, in 22 (95.6%) of 23 animals. Stimulation of the superior laryngeal nerves increased vocal fold length and tension but was not required for phonation. Technical aspects of chronic implantation and stimulation of the laryngeal nerves are discussed. The development and successful long-term implantation of electrodes on the laryngeal nerves and their use in repeated induced phonation have not been reported previously.

2014 ◽  
Vol 128 (6) ◽  
pp. 534-539 ◽  
Author(s):  
K H Hong ◽  
H T Park ◽  
Y S Yang

AbstractBackground:The non-recurrent laryngeal nerve is subject to potential injury during thyroid surgery. Intra-operative identification and preservation of this nerve can be challenging. Its presence is associated with an aberrant subclavian artery and the developmental absence of the brachiocephalic trunk. This study aimed to evaluate the incidence of non-recurrent laryngeal nerves and present a new classification system for the course of these nerves.Methods:Non-recurrent laryngeal nerves were identified on the right side in 15 patients who underwent thyroidectomy. The incidence of non-recurrent laryngeal nerves (during thyroidectomy) and aberrant subclavian arteries (using neck computed tomography) was evaluated, and the course of the nerves was classified according to their travelling patterns.Results:The overall incidence of non-recurrent laryngeal nerves was 0.68 per cent. The travelling patterns of the nerves could be classified as: descending (33 per cent), vertical (27 per cent), ascending (20 per cent) or V-shaped (20 per cent).Conclusion:Clinicians need to be aware of these variations to avoid non-recurrent laryngeal nerve damage. A retroesophageal subclavian artery (on neck computed tomography) virtually assures a non-recurrent laryngeal nerve. This information is important for preventing vocal fold paralysis. Following a review of non-recurrent laryngeal nerve travelling patterns, a new classification was devised.


2021 ◽  
pp. 1-10
Author(s):  
Michihiro Osumi ◽  
Daisuke Shimizu ◽  
Yuki Nishi ◽  
Shu Morioka

Background: Patients with brachial plexus avulsion (BPA) usually experience phantom sensations and phantom limb pain (PLP) in the deafferented limb. It has been suggested that evoking the sensation of touch in the deafferented limb by stimulating referred sensation areas (RSAs) on the cheek or shoulder might alleviate PLP. However, feasible rehabilitation techniques using this approach have not been reported. Objective: The present study sought to examine the analgesic effects of simple electrical stimulation of RSAs in BPA patients with PLP. Methods: Study 1: Electrical stimulation of RSAs for 60 minutes was conducted for six BPA patients suffering from PLP to examine short-term analgesic effects. Study 2: A single case design experiment was conducted with two BPA patients to investigate whether electrical stimulation of RSAs was more effective for alleviating PLP than control electrical stimulation (electrical stimulation of sites on side opposite to the RSAs), and to elucidate the long-term effects of electrical stimulation of RSAs. Results: Study 1: Electrical stimulation of RSAs evoked phantom touch sensations in the deafferented limb, and significantly alleviated PLP (p <  0.05). Study 2: PLP was alleviated more after electrical stimulation on RSAs compared with control electrical stimulation (p <  0.05). However, the analgesic effects of electrical stimulation on RSAs were observed only in the short term, not in the long term (p >  0.05). Conclusions: Electrical stimulation of RSAs not only evoked phantom touch sensation but also alleviated PLP in the short term. The results indicate that electrical stimulation of RSAs may provide a useful practical rehabilitation technique for PLP. Future studies will be required to clarify the mechanisms underlying immediate PLP alleviation via electrical stimulation of RSAs.


1997 ◽  
Vol 106 (7) ◽  
pp. 594-598 ◽  
Author(s):  
Sina Nasri ◽  
Joel A. Sercarz ◽  
Pouneh Beizai ◽  
Young-Mo Kim ◽  
Ming Ye ◽  
...  

The neuroanatomy of the larynx was explored in seven dogs to assess whether there is motor innervation to the thyroarytenoid (TA) muscle from the external division of the superior laryngeal nerve (ExSLN). In 3 animals, such innervation was identified. Electrical stimulation of microelectrodes applied to the ExSLN resulted in contraction of the TA muscle, indicating that this nerve is motor in function. This was confirmed by electromyographic recordings from the TA muscle. Videolaryngostroboscopy revealed improvement in vocal fold vibration following stimulation of the ExSLN compared to without it. Previously, the TA muscle was thought to be innervated solely by the recurrent laryngeal nerve. This additional pathway from the ExSLN to the TA muscle may have important clinical implications in the treatment of neurologic laryngeal disorders such as adductor spasmodic dysphonia.


2015 ◽  
Vol 23 (3) ◽  
pp. 99-103
Author(s):  
Somesh Mozumder ◽  
Shirish Dubey ◽  
Aniruddha Dam ◽  
Anup Kumar Bhowmick

Introduction: Recurrent laryngeal nerves (RLN) are particularly prone to injury during thyroid surgeries due to its intimate relationship and proximity with the gland. Zuckerkandl’s tubercle (ZT) helps in preserving RLN intra operative. Material and Methods: A prospective study for identifying RLN in thyroid surgery using relationship with superior parathyroid gland and tubercle of Zuckerkandl was conducted on 50 thyroidectomy patients between August 2013 and February 2014. Results: In all cases ZT was identified. Temporary paralysis of RLN was seen in 3 (6%) cases and permanent paralysis in 2 (4%) of cases. Discussion: The site of greatest risk during thyroidectomy to the RLN is in the last 2-3 cm extralaryngeal course of the nerve. Relationship of recurrent laryngeal nerve with superior parathyroid gland and tubercle of Zukerkandl (ZT) is known. Conclusion: Use of ZT and superior parathyroids as a landmark allows safe dissection of RLN.


Author(s):  
José N. Nobrega ◽  
John Gaito

SUMMARY:Previous research indicated that sequential alternation of stimulation of certain homologous brain areas via chronically implanted electrodes resulted in oscillation of high and low latencies for convulsions. This phenomenon suggested the establishment of interhemispheric facilitatory-inhibitory effects as a result of repeated stimulation of the two brain sites. In the present study, the latency oscillation pattern was observed in split-brain rats as well as in bilaterally stimulated controls, but not in rats stimulated on one side only. Significant differences were observed between split-brain and control rats in terms of initial kindling rates, duration of convulsions and type of oscillation. Results are discussed in the context of possible interhemispheric mechanisms involved in long term kindling.


2020 ◽  
Vol 77 (6) ◽  
pp. 2033-2042 ◽  
Author(s):  
Arthur N Popper

Abstract Collaboration is integral to most scientific research today, and it has certainly been important in my career and for my career path. However, not all collaborations are “equal”. Most, in fact, are short term or transient, with collaborators working on one project and then moving on to other projects and perhaps other collaborations. There are, however, a few collaborations, such as the three I describe here, that are long term and that not only resulted in a large number of collaborative projects but that also strongly influenced career paths. Indeed, these three collaborations resulted in all of us undertaking new paths that we were not likely to have taken alone or without the stimulation of working with someone we know well and have learned to trust.


1988 ◽  
Vol 99 (5) ◽  
pp. 465-471 ◽  
Author(s):  
Takemoto Shin ◽  
Tadatsugu Maeyama ◽  
Ikuro Morikawa ◽  
Toshiro Umezaki

In this investigation, particular attention was paid to elucidate the laryngeal reflex mechanism of protective closure and the sensory function of the larynx during deglutition. For this purpose, three different experimental procedures were adopted: (1) subglottal pressure of felines was measured during deglutition using a pressure transducer; (2) subglottal pressure of human beings was measured during deglutition using a pressure transducer; and (3) afferent discharges from superior and recurrent laryngeal nerves of felines were recorded. The following conclusions appear justified. (1) Feline and human subglottal pressure during deglutition showed the following pattern. The pressure rises with onset of deglutition, temporarily drops during laryngeal elevation, rises again during the downward movement of the larynx, and drops again at the end of the glutltion. This pattern was not affected by the resection of the unilateral recurrent laryngeal nerve. (2) The superior laryngeal nerve is involved in the sensory function of the pharynx, larynx, and trachea. At least two types of afferent discharges from superficial and infernal sensory nerves are suspected. Afferent discharges from the recurrent laryngeal nerves in the larynx and trachea are not as distinct as those of the superior laryngeal nerve, and this seems to correspond with various changes in the thorax. During deglutition, afferent discharges were recorded from superior to recurrent laryngeal nerves.


Sign in / Sign up

Export Citation Format

Share Document