Production and characterization of fully biobased foamed films based on gelatin

2020 ◽  
Vol 39 (2) ◽  
pp. 69-97
Author(s):  
Javier Solorza-Feria ◽  
Maria Alejandra Ortiz-Zarama ◽  
Antonio Jimenez-Aparicio ◽  
Denis Rodrigue

The objective of this study was to produce and characterize gelatin foamed films using extrusion. Three “optimum” formulations containing tannic acid, nanoclays (Cloisite Na+), glycerol, water, and gelatin, as well as three “controls” without tannic acid and nanoclays were prepared by calendering. Furthermore, the three “optimum” formulations were produced by extrusion film blowing only, since no stable processing conditions could be obtained for the controls. A complete set of sample characterization was performed, including morphological, mechanical, physical, and thermal properties. The results showed that besides the processing method, the thickness was also controlled by the glycerol and water content, leading to density slightly above unity, with higher values for the optimum materials. The calendered films from the optimum formulations showed overall a higher number of cells and cell density than the controls. Higher elastic moduli and tensile strengths were obtained for the films from the optimum formulations made by either method because of the reinforcing effect of the tannic acid and nanoclays, but this led to lower strain at break. The thermal profiles were similar for all films, with higher stability for the optimum formulations. The results were also explained via chemical interactions between the components as observed by Fourier transform infrared spectroscopy. Overall, the optimum formulations not only produced better foamed films in terms of general properties but were much easier to process by both methods (calendering and blowing).

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2449
Author(s):  
Beata Kaczmarek-Szczepańska ◽  
Olha Mazur ◽  
Marta Michalska-Sionkowska ◽  
Krzysztof Łukowicz ◽  
Anna Maria Osyczka

In this study, hydrogels based on chitosan cross-linked by glyoxal have been investigated for potential medical applications. Hydrogels were loaded with tannic acid at different concentrations. The thermal stability and the polyphenol-releasing rate were determined. For a preliminary assessment of the clinical usefulness of the hydrogels, they were examined for blood compatibility and in the culture of human dental pulp cells (hDPC). The results showed that after immersion in a polyphenol solution, chitosan/glyoxal hydrogels remain nonhemolytic for erythrocytes, and we also did not observe the cytotoxic effect of hydrogels immersed in tannic acid (TA) solutions with different concentration. Tannic acid was successfully released from hydrogels, and its addition improved material thermal stability. Thus, the current findings open the possibility to consider such hydrogels in clinics.


2021 ◽  
pp. 213-222
Author(s):  
Dandan Wu ◽  
Xiaoxia Zhu ◽  
Lu Tan ◽  
Haiqin Zhang ◽  
Lina Sha ◽  
...  

The genera of the tribe Triticeae (family Poaceae), constituting many economically important plants with abundant genetic resources, carry genomes such as St, H, P, and Y. The genome symbol of <i>Roegneria</i> C. Koch (Triticeae) is StY. The St and Y genomes are crucial in Triticeae, and tetraploid StY species participate extensively in polyploid speciation. Characterization of St and Y nonhomologous chromosomes in StY-genome species could help understand variation in the chromosome structure and differentiation of StY-containing species. However, the high genetic affinity between St and Y genome and the deficiency of a complete set of StY nonhomologous probes limit the identification of St and Y genomes and variation of chromosome structures among <i>Roegneria</i> species. We aimed to identify St- and Y-enhanced repeat clusters and to study whether homoeologous chromosomes between St and Y genomes could be accurately identified due to high affinity. We employed comparative genome analyses to identify St- and Y-enhanced repeat clusters and generated a FISH-based karyotype of <i>R. grandis</i> (Keng), one of the taxonomically controversial StY species, for the first time. We explored 4 novel repeat clusters (StY_34, StY_107, StY_90, and StY_93), which could specifically identify individual St and Y nonhomologous chromosomes. The clusters StY_107 and StY_90 could identify St and Y addition/substitution chromosomes against common wheat genetic backgrounds. The chromosomes V_St, VII_St, I_Y, V_Y, and VII_Y displayed similar probe distribution patterns in the proximal region, indicating that the high affinity between St and Y genome might result from chromosome rearrangements or transposable element insertion among V_St/Y, VII_St/Y, and I_Y chromosomes during allopolyploidization. Our results can be used to employ FISH further to uncover the precise karyotype based on colinearity of Triticeae species by using the wheat karyotype as reference, to analyze diverse populations of the same species to understand the intraspecific structural changes, and to generate the karyotype of different StY-containing species to understand the interspecific chromosome variation.


Author(s):  
E. G. Pashuk ◽  
G. D Kardashova ◽  
Sh. A. Khalilov

The paper discusses the possibility of using resonant ultrasonic spectroscopy (RUS) as a source of information for the physics and technology of obtaining silicon carbide ceramics by the example of samples of the composition SiC ‒ 25 % AlN, obtained by the method of spark plasma sintering. The possibility of obtaining a complete set of elastic moduli (EM) of samples with an error of less than 1 % is shown. At the same time, the requirements for surface quality are significantly reduced. The revealed functional relationship between EM and porosity makes it possible to create a non-destructive method of porosity control and calculate the elastic moduli at zero porosity (i. e., the elastic modulus of the ceramic matrix EM0). Comparison of EM0 samples obtained at different parameters of the technological process allows determining their optima values..


2019 ◽  
Vol 120 ◽  
pp. 748-755 ◽  
Author(s):  
Ruyi Li ◽  
Zicong Zeng ◽  
Guiming Fu ◽  
Yin Wan ◽  
Chengmei Liu ◽  
...  

2009 ◽  
Vol 1228 ◽  
Author(s):  
Hao Wang ◽  
Greg C. Hartman ◽  
Joshua Williams ◽  
Jennifer L. Gray

AbstractThere are many factors that have the potential to limit significant advances in device technology. These include the ability to arrange materials at shrinking dimensions and the ability to successfully integrate new materials with better properties or new functionalities. To overcome these limitations, the development of advanced processing methods that can organize various combinations of materials at nano-scale dimensions with the necessary quality and reliability is required. We have explored using a gallium focused ion beam (FIB) as a method of integrating highly mismatched materials with silicon by creating template patterns directly on Si with nanoscale resolution. These templates are potentially useful as a means of locally controlling topography at nanoscale dimensions or as a means of locally implanting Ga at specific surface sites. We have annealed these templates in vacuum to study the effects of ion dosage on local Ga concentration and topography. We have also investigated the feasibility of creating Ga nanodots using this method that could eventually be converted to GaN through a nitridation process. Atomic force microscopy and electron microscopy characterization of the resulting structures are shown for a variety of patterning and processing conditions.


2006 ◽  
Vol 2006 ◽  
pp. 1-11 ◽  
Author(s):  
Z. G. Wang ◽  
Y. Liu ◽  
L. Z. Sun ◽  
G. Wang ◽  
L. L. Fajardo

A new imaging modality framework, called elasto-mammography, is proposed to generate the elastograms of breast tissues based on conventional X-ray mammography. The displacement information is extracted from mammography projections before and after breast compression. Incorporating the displacement measurement, an elastography reconstruction algorithm is specifically developed to estimate the elastic moduli of heterogeneous breast tissues. Case studies with numerical breast phantoms are conducted to demonstrate the capability of the proposed elasto-mammography. Effects of noise with measurement, geometric mismatch, and elastic contrast ratio are evaluated in the numerical simulations. It is shown that the proposed methodology is stable and robust for characterization of the elastic moduli of breast tissues from the projective displacement measurement.


Sign in / Sign up

Export Citation Format

Share Document