Yale-CMU-Berkeley dataset for robotic manipulation research

2017 ◽  
Vol 36 (3) ◽  
pp. 261-268 ◽  
Author(s):  
Berk Calli ◽  
Arjun Singh ◽  
James Bruce ◽  
Aaron Walsman ◽  
Kurt Konolige ◽  
...  

In this paper, we present an image and model dataset of the real-life objects from the Yale-CMU-Berkeley Object Set, which is specifically designed for benchmarking in manipulation research. For each object, the dataset presents 600 high-resolution RGB images, 600 RGB-D images and five sets of textured three-dimensional geometric models. Segmentation masks and calibration information for each image are also provided. These data are acquired using the BigBIRD Object Scanning Rig and Google Scanners. Together with the dataset, Python scripts and a Robot Operating System node are provided to download the data, generate point clouds and create Unified Robot Description Files. The dataset is also supported by our website, www.ycbbenchmarks.org , which serves as a portal for publishing and discussing test results along with proposing task protocols and benchmarks.

Author(s):  
ADI SUCIPTO ◽  
RADEN SANGGAR DEWANTO ◽  
DADET PRAMADIHANTO

ABSTRAKPengembangan sistem operasi pada bidang robotika telah menjadi fokus utama pada era ini. Salah satu perkembangan sistem operasi pada teknologi robot saat ini adalah Robot Operating System (ROS) dengan RViz. ROS merupakan sistem operasi berbasis library dan beberapa tools untuk mengembangkan suatu program pada robot, sedangkan RViz merupakan visualisasi tiga dimensi yang dapat digunakan untuk memvisualisasikan robot dan data sensor dynamixel. Pada Penelitian kali ini, peneliti membuat simulasi beberapa gerakan yang dilakukan pada RViz dan kemudian diimplementasikan pada robot. Tingkat keberhasilan dari perencanaan gerakan ini memiliki rata rata error sebesar 1.8%. Gerakan condong ke kiri memiliki rata-rata error sebesar 0.83%. Gerakan condong ke kanan memiliki rata-rata error sebesar 0.84%. Gerakan mengangkat satu kaki memiliki rata-rata error sebesar 1.71%. Gerakan kaki kanan ke depan memiliki rata-rata error sebesar 3.83%.Kata kunci: Robot Berkaki Dua, Robot Operating System (ROS), RViz (rosvisualization), Dynamixel Controller, Data Sensor Dynamixel. ABSTRACTThe development of operating systems in the field of robotics has become the main focus of this era. One of the operating system developments in robot technology today is the Robot Operating System (ROS) with RViz. ROS is a library-based operating system and several tools for developing a program on robots, while RVIZ is a three-dimensional visualization that can be used to visualize robots and dynamixel sensor data. In this study, researchers made a simulation of some of the movements carried out on RViz and then implemented on robots. The success rate of planning this movement has an average error of 1.8%. Leaning to the left has an average error of 0.83%. Leaning to the right has an average error of 0.84%. One leg lift has an average error of 1.71%. The movement of the right foot forward has an average error of 3.83%.Keywords: Biped Robot, Robot Operating System (ROS), RViz (Ros-Visualization), Dynamixel Controller, Sensor Dynamixel Data.


SIMULATION ◽  
2017 ◽  
Vol 93 (9) ◽  
pp. 771-780 ◽  
Author(s):  
Erkan Uslu ◽  
Furkan Çakmak ◽  
Nihal Altuntaş ◽  
Salih Marangoz ◽  
Mehmet Fatih Amasyalı ◽  
...  

Robots are an important part of urban search and rescue tasks. World wide attention has been given to developing capable physical platforms that would be beneficial for rescue teams. It is evident that use of multi-robots increases the effectiveness of these systems. The Robot Operating System (ROS) is becoming a standard platform for the robotics research community for both physical robots and simulation environments. Gazebo, with connectivity to the ROS, is a three-dimensional simulation environment that is also becoming a standard. Several simultaneous localization and mapping algorithms are implemented in the ROS; however, there is no multi-robot mapping implementation. In this work, two multi-robot mapping algorithm implementations are presented, namely multi-robot gMapping and multi-robot Hector Mapping. The multi-robot implementations are tested in the Gazebo simulation environment. Also, in order to achieve a more realistic simulation, every incremental robot movement is modeled with rotational and translational noise.


Solid Earth ◽  
2017 ◽  
Vol 8 (6) ◽  
pp. 1241-1253 ◽  
Author(s):  
Samuel T. Thiele ◽  
Lachlan Grose ◽  
Anindita Samsu ◽  
Steven Micklethwaite ◽  
Stefan A. Vollgger ◽  
...  

Abstract. The advent of large digital datasets from unmanned aerial vehicle (UAV) and satellite platforms now challenges our ability to extract information across multiple scales in a timely manner, often meaning that the full value of the data is not realised. Here we adapt a least-cost-path solver and specially tailored cost functions to rapidly interpolate structural features between manually defined control points in point cloud and raster datasets. We implement the method in the geographic information system QGIS and the point cloud and mesh processing software CloudCompare. Using these implementations, the method can be applied to a variety of three-dimensional (3-D) and two-dimensional (2-D) datasets, including high-resolution aerial imagery, digital outcrop models, digital elevation models (DEMs) and geophysical grids. We demonstrate the algorithm with four diverse applications in which we extract (1) joint and contact patterns in high-resolution orthophotographs, (2) fracture patterns in a dense 3-D point cloud, (3) earthquake surface ruptures of the Greendale Fault associated with the Mw7.1 Darfield earthquake (New Zealand) from high-resolution light detection and ranging (lidar) data, and (4) oceanic fracture zones from bathymetric data of the North Atlantic. The approach improves the consistency of the interpretation process while retaining expert guidance and achieves significant improvements (35–65 %) in digitisation time compared to traditional methods. Furthermore, it opens up new possibilities for data synthesis and can quantify the agreement between datasets and an interpretation.


2017 ◽  
Author(s):  
Samuel T. Thiele ◽  
Lachlan Grose ◽  
Anindita Samsu ◽  
Steven Micklethwaite ◽  
Stefan A. Vollgger ◽  
...  

Abstract. Two centuries ago William Smith produced the first geological map of England and Wales, an achievement that underlined the importance of mapping geological contacts and structures as perhaps the most fundamental skill set in earth science. The advent of large digital datasets from unmanned aerial vehicle (UAV) and satellite platforms now challenges our ability to extract information across multiple scales in a timely manner, often meaning that the full value of the data is not realised. Here we adapt a least-cost-path solver and specially tailored cost-functions to rapidly extract and measure structural features from point cloud and raster datasets. We implement the method in the geographic information system QGIS and the point cloud and mesh processing software CloudCompare. Using these implementations, the method can be applied to a variety of three-dimensional (3D) and two-dimensional (2D) datasets including high-resolution aerial imagery, virtual outcrop models, digital elevation models (DEMs) and geophysical grids. We demonstrate the algorithm with four diverse applications, where we extract: (1) joint and contact patterns in high-resolution orthophotographs; (2) fracture patterns in a dense 3D point cloud; (3) earthquake surface ruptures of the Greendale Fault associated with the Mw7.1 Darfield earthquake (New Zealand) from high-resolution light detection and ranging (LiDAR) data, and; (4) oceanic fracture zones from bathymetric data of the North Atlantic. The approach improves the objectivity and consistency of the interpretation process while retaining expert-guidance, and achieves significant improvements (35–65 %) in digitisation time compared to traditional methods. Furthermore, it opens up new possibilities for data synthesis and can quantify the agreement between datasets and an interpretation.


2015 ◽  
pp. 11-19
Author(s):  
R. M. Bembel ◽  
I. A. Schetinin

We consider a method of increasing the efficiency of field development through the use of high-resolution seismic building bulk maps at a scale of 1: 10,000 to isolate destruction subvertical zones that are potentially capable of producing a maximum increase in production when placing wells in these areas. Control test results showed high-resolution volumetric seismic confirmation of the results in 76% of cases. For maximum efficiency, the wiring holes at localized areas recommend the use of technology drilling geological support aimed at the most efficient collectors of penetration of the best quality. Control of the position of the barrel during drilling using the 3D geologic model allows tunneling in subvertical zones degradation.


2017 ◽  
Vol 14 (01) ◽  
pp. 1650028 ◽  
Author(s):  
Dimitrios Kanoulas ◽  
Jinoh Lee ◽  
Darwin G. Caldwell ◽  
Nikos G. Tsagarakis

Detecting affordances on objects is one of the main open problems in robotic manipulation. This paper presents a new method to represent and localize grasp affordances as bounded curved contact patches (paraboloids) of the size of the robotic hand. In particular, given a three-dimensional (3D) point cloud from a range sensor, a set of potential grasps is localized on a detected object by a fast contact patch fitting and validation process. For the object detection, three standard methods from the literature are used and compared. The potential grasps on the object are then refined to a single affordance using their shape (size and curvature) and pose (reachability and minimum torque effort) properties, with respect to the robot and the manipulation task. We apply the proposed method to a circular valve turning task, verifying the ability to accurately and rapidly localize grasp affordances, under significant uncertainty in the environment. We experimentally validate the method with the humanoid robot COMAN on 10 circular control valves fixed on a wall, from five different viewpoints and robot poses for each valve. We compare the reliability of the introduced local grasp affordances method to the baseline that relies only on object detection, illustrating the superiority of ours for the valve turning task.


2021 ◽  
Author(s):  
Benjamin Christie ◽  
Osama Ennasr ◽  
Garry Glaspell

Unknown Environment Exploration (UEE) with an Unmanned Ground Vehicle (UGV) is extremely challenging. This report investigates a frontier exploration approach, in simulation, that leverages Simultaneous Localization And Mapping (SLAM) to efficiently explore unknown areas by finding navigable routes. The solution utilizes a diverse sensor payload that includes wheel encoders, three-dimensional (3-D) LIDAR, and Red, Green, Blue and Depth (RGBD) cameras. The main goal of this effort is to leverage frontier-based exploration with a UGV to produce a 3-D map (up to 10 cm resolution). The solution provided leverages the Robot Operating System (ROS).


Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Author(s):  
Kenneth H. Downing ◽  
Hu Meisheng ◽  
Hans-Rudolf Went ◽  
Michael A. O'Keefe

With current advances in electron microscope design, high resolution electron microscopy has become routine, and point resolutions of better than 2Å have been obtained in images of many inorganic crystals. Although this resolution is sufficient to resolve interatomic spacings, interpretation generally requires comparison of experimental images with calculations. Since the images are two-dimensional representations of projections of the full three-dimensional structure, information is invariably lost in the overlapping images of atoms at various heights. The technique of electron crystallography, in which information from several views of a crystal is combined, has been developed to obtain three-dimensional information on proteins. The resolution in images of proteins is severely limited by effects of radiation damage. In principle, atomic-resolution, 3D reconstructions should be obtainable from specimens that are resistant to damage. The most serious problem would appear to be in obtaining high-resolution images from areas that are thin enough that dynamical scattering effects can be ignored.


Sign in / Sign up

Export Citation Format

Share Document