Morphological and functional assessment of the uterus: “one-stop shop imaging” using a compressed-sensing accelerated, free-breathing T1-VIBE sequence

2020 ◽  
pp. 028418512093626
Author(s):  
Daniel Hausmann ◽  
Diana Kreul ◽  
Markus Klarhöfer ◽  
Dominik Nickel ◽  
Robert Grimm ◽  
...  

Background The combination of motion-insensitive, high-temporal, and spatial resolution imaging with evaluation of quantitative perfusion has the potential to increase the diagnostic capabilities of magnetic resonance imaging (MRI) in the female pelvis. Purpose To compare a free-breathing compressed-sensing VIBE (fbVIBE) with flexible temporal resolution (range = 4.6–13.8 s) with breath-hold VIBE (bhVIBE) and to evaluate the potential value of quantifying uterine perfusion. Material and Methods A total of 70 datasets from 60 patients (bhVIBE: n = 30; fbVIBE: n = 40) were evaluated by two radiologists. Only temporally resolved reconstruction (fbVIBE) was performed on 30 of the fbVIBE datasets. For a subset (n = 10) of the fbVIBE acquisitions, a time- and motion-resolved reconstruction (mrVIBE) was evaluated. Image quality (IQ), artifacts, diagnostic confidence (DC), and delineation of uterine structures (DoS) were graded on Likert scales (IQ/DC/DoS: 1 (non-diagnostic) to 5 (perfect); artifacts: 1 (no artifacts) to 5 (severe artifacts)). A Tofts model was applied for perfusion analysis. Ktrans was obtained in the myometrium (Mm), junctional zone (Jz), and cervix (Cx). Results The median IQ/DoS/DC scores of fbVIBE (4/5/5 κ >0.7–0.9) and bhVIBE (4/4/4; κ = 0.5–0.7; P > 0.05) were high, but Artifacts were graded low (fbVIBE/bhVIBE: 2/2; κ = 0.6/0.5; P > 0.05). Artifacts were only slightly improved by the additional motion-resolved reconstruction (fbVIBE/mrVIBE: 2/1.5; P = 0.08); fbVIBE was preferred in most cases (7/10). Significant differences of Ktrans values were found between Cx, Jz, and Mm (0.12/0.21/0.19; P < 0.05). Conclusion The fbVIBE sequence allows functional and morphological assessment of the uterus at comparable IQ to bhVIBE.

2013 ◽  
Vol 39 (1) ◽  
pp. 179-188 ◽  
Author(s):  
Seunghoon Nam ◽  
Susie N. Hong ◽  
Mehmet Akçakaya ◽  
Yongjun Kwak ◽  
Beth Goddu ◽  
...  

Pneumologie ◽  
2012 ◽  
Vol 66 (06) ◽  
Author(s):  
D Maxien ◽  
M Ingrisch ◽  
F Meinel ◽  
S Thieme ◽  
MF Reiser ◽  
...  

Author(s):  
Mei Sun ◽  
Jinxu Tao ◽  
Zhongfu Ye ◽  
Bensheng Qiu ◽  
Jinzhang Xu ◽  
...  

Background: In order to overcome the limitation of long scanning time, compressive sensing (CS) technology exploits the sparsity of image in some transform domain to reduce the amount of acquired data. Therefore, CS has been widely used in magnetic resonance imaging (MRI) reconstruction. </P><P> Discussion: Blind compressed sensing enables to recover the image successfully from highly under- sampled measurements, because of the data-driven adaption of the unknown transform basis priori. Moreover, analysis-based blind compressed sensing often leads to more efficient signal reconstruction with less time than synthesis-based blind compressed sensing. Recently, some experiments have shown that nonlocal low-rank property has the ability to preserve the details of the image for MRI reconstruction. Methods: Here, we focus on analysis-based blind compressed sensing, and combine it with additional nonlocal low-rank constraint to achieve better MR images from fewer measurements. Instead of nuclear norm, we exploit non-convex Schatten p-functionals for the rank approximation. </P><P> Results & Conclusion: Simulation results indicate that the proposed approach performs better than the previous state-of-the-art algorithms.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Szilvia Gaál ◽  
Zsuzsanna Kahán ◽  
Viktor Paczona ◽  
Renáta Kószó ◽  
Rita Drencsényi ◽  
...  

Abstract Background Studying the clinical utility of deep-inspirational breath-hold (DIBH) in left breast cancer radiotherapy (RT) was aimed at focusing on dosimetry and feasibility aspects. Methods In this prospective trial all enrolled patients went through planning CT in supine position under both DIBH and free breathing (FB); in whole breast irradiation (WBI) cases prone CT was also taken. In 3-dimensional conformal radiotherapy (3DCRT) plans heart, left anterior descending coronary artery (LAD), ipsilateral lung and contralateral breast doses were analyzed. The acceptance of DIBH technique as reported by the patients and the staff was analyzed; post-RT side-effects including radiation lung changes (visual scores and lung density measurements) were collected. Results Among 130 enrolled patients 26 were not suitable for the technique while in 16, heart or LAD dose constraints were not met in the DIBH plans. Among 54 and 34 patients receiving WBI and postmastectomy/nodal RT, respectively with DIBH, mean heart dose (MHD) was reduced to < 50%, the heart V25 Gy to < 20%, the LAD mean dose to < 40% and the LAD maximum dose to about 50% as compared to that under FB; the magnitude of benefit was related to the relative increase of the ipsilateral lung volume at DIBH. Nevertheless, heart and LAD dose differences (DIBH vs. FB) individually varied. Among the WBI cases at least one heart/LAD dose parameter was more favorable in the prone or in the supine FB plan in 15 and 4 cases, respectively; differences were numerically small. All DIBH patients completed the RT, inter-fraction repositioning accuracy and radiation side-effects were similar to that of other breast RT techniques. Both the patients and radiographers were satisfied with the technique. Conclusions DIBH is an excellent heart sparing technique in breast RT, but about one-third of the patients do not benefit from that otherwise laborious procedure or benefit less than from an alternative method. Trial registration: retrospectively registered under ISRCTN14360721 (February 12, 2021)


Diagnostics ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 634
Author(s):  
Weon Jang ◽  
Ji Soo Song ◽  
Sang Heon Kim ◽  
Jae Do Yang

While magnetic resonance cholangiopancreatography (MRCP) is routinely used, compressed sensing MRCP (CS-MRCP) and gradient and spin-echo MRCP (GRASE-MRCP) with breath-holding (BH) may allow sufficient image quality with shorter acquisition times. This study qualitatively and quantitatively compared BH-CS-MRCP and BH-GRASE-MRCP and evaluated their clinical effectiveness. Data from 59 consecutive patients who underwent both BH-CS-MRCP and BH-GRASE-MRCP were qualitatively analyzed using a five-point Likert-type scale. The signal-to-noise ratio (SNR) of the common bile duct (CBD), contrast-to-noise ratio (CNR) of the CBD and liver, and contrast ratio between periductal tissue and the CBD were measured. Paired t-test, Wilcoxon signed-rank test, and McNemar’s test were used for statistical analysis. No significant differences were found in overall image quality or duct visualization of the CBD, right and left 1st level intrahepatic duct (IHD), cystic duct, and proximal pancreatic duct (PD). BH-CS-MRCP demonstrated higher background suppression and better visualization of right (p = 0.004) and left 2nd level IHD (p < 0.001), mid PD (p = 0.003), and distal PD (p = 0.041). Image quality degradation was less with BH-GRASE-MRCP than BH-CS-MRCP (p = 0.025). Of 24 patients with communication between a cyst and the PD, 21 (87.5%) and 15 patients (62.5%) demonstrated such communication on BH-CS-MRCP and BH-GRASE-MRCP, respectively. SNR, contrast ratio, and CNR of BH-CS-MRCP were higher than BH-GRASE-MRCP (p < 0.001). Both BH-CS-MRCP and BH-GRASE-MRCP are useful imaging methods with sufficient image quality. Each method has advantages, such as better visualization of small ducts with BH-CS-MRCP and greater time saving with BH-GRASE-MRCP. These differences allow diverse choices for visualization of the pancreaticobiliary tree in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document