scholarly journals Progesterone activates the cyclic AMP-protein kinase A signalling pathway by upregulating ABHD2 in fertile men

2021 ◽  
Vol 49 (3) ◽  
pp. 030006052199952
Author(s):  
Feng Jiang ◽  
Yong Zhu ◽  
Ying Chen ◽  
Xiaofeng Tang ◽  
Liu Liu ◽  
...  

Objective This was a prospective study to investigate whether progesterone affects sperm activity by regulating the cyclic AMP-protein kinase A (cAMP-PKA) signalling pathway via α/β hydrolase domain-containing protein 2 (ABHD2). Methods Spermatozoa were collected from healthy and infertile men (with oligoasthenospermia or abnormal acrosome; n = 30/group). The expression of and mutations in ABHD2 were detected by quantitative PCR, western blot, and gene sequencing. The expression of ABHD2 in the presence of progesterone was detected in all groups, and cAMP and PKA levels were detected by ELISA in fertile men after treatment with ABHD2 antibody and PKA inhibitor H-89, respectively. Results Expression of ABHD2 mRNA and protein were reduced in spermatozoa from infertile compared with fertile men. Four gene mutation sites were detected in spermatozoa from the infertile groups. Progesterone increased mRNA and protein levels of ABHD2 in healthy spermatozoa but not in spermatozoa from infertile men. The levels of cAMP and PKA were increased by progesterone in healthy spermatozoa, and the progesterone-increased cAMP and PKA were decreased by ABHD2 antibody and H-89, respectively. Conclusion Progesterone regulates the ABHD2-mediated cAMP-PKA signalling pathway in healthy spermatozoa, which provides a new target for clinical diagnosis and treatment of infertility.

1994 ◽  
Vol 301 (3) ◽  
pp. 863-869 ◽  
Author(s):  
J L Liu ◽  
D N Papachristou ◽  
Y C Patel

The somatostatin (SS) gene is transcriptionally regulated via the cyclic AMP (cAMP) response element (CRE), located in the proximal promoter (-41 to -48 bp). We have previously reported that glucocorticoids induce dose-dependent cell-specific alterations in the steady-state SS mRNA level. Here we have investigated direct transcriptional control of the SS gene by glucocorticoids. We have examined transcriptional interaction between glucocorticoids and the cAMP signalling pathway and mapped the 5′ upstream regulatory region of the SS gene involved in glucocorticoid transactivation. Transcriptional regulation was determined by analysis of chloramphenicol acetyltransferase (CAT) activity in PC12 rat pheochromocytoma cells and A126-1B2 (protein kinase A-deficient mutant PC12) cells, by acute transfection of 5′ flanking SS DNA (- 750, -250 and -71 bp) ligated to the reporter (CAT) gene. Dexamethasone (DEX) induced a dose-dependent 2.2-fold stimulation of SS gene transcription in PC12 cells, but not in A126-1B2 cells. Other steroid and thyroid hormones tested, and retinoic acid, were ineffective, while cAMP and forskolin stimulated gene transcription 4-5-fold in PC12 cells but not in A126-1B2 cells. DEX exerted an additive effect on cAMP-induced gene transcription. Deletion of the promoter from -750 to -71 bp (but not from -750 to -250 bp) abolished all stimulatory effects of DEX without affecting cAMP responsiveness. Mutation of the CRE abrogated both DEX- and cAMP-dependent gene enhancement. Gel electrophoretic mobility shift assays confirmed that the -250 to -71 bp region of the SS promoter (but not the -71 to +55 bp domain) binds specifically to a glucocorticoid response element-sensitive nuclear protein(s) from PC12 cells, suggesting a putative glucocorticoid receptor interaction with SS promoter DNA. We conclude that glucocorticoids regulate SS gene transcription positively. Glucocorticoid-induced transactivation shows dependence on protein kinase. A activity, and may be mediated via protein-protein interaction between the glucocorticoid receptor and the CRE binding protein. DNA sequences upstream from the CRE between -250 and -71 bp in the SS promoter appear to be the target of glucocorticoid action.


Development ◽  
1995 ◽  
Vol 121 (12) ◽  
pp. 4161-4170 ◽  
Author(s):  
R.L. Johnson ◽  
J.K. Grenier ◽  
M.P. Scott

The membrane protein, Patched, plays a critical role in patterning embryonic and imaginal tissues in Drosophila. patched constitutively inactivates the transcription of target genes such as wingless, decapentaplegic, and patched itself. The secreted protein, Hedgehog, induces transcription of target genes by opposing the Patched signaling pathway. Using the Gal4 UAS system we have overexpressed patched in wing imaginal discs and found that high Patched levels, expressed in either normal or ectopic patterns, result in loss of wing vein patterning in both compartments centering at the anterior/posterior border. In addition, patched inhibits the formation of the mechanosensory neurons, the campaniform sensilla, in the wing blade. The patched wing vein phenotype is modulated by mutations in hedgehog and cubitus interruptus (ci). Patched overexpression inhibits transcription of patched and decapentaplegic and post-transcriptionally decreases the amount of Ci protein at the anterior/posterior boundary. In hedgehogMrt wing discs, which express ectopic hedgehog, Ci levels are correspondingly elevated, suggesting that hedgehog relieves patched repression of Ci accumulation. Protein kinase A also regulates Ci; protein kinase A mutant clones in the anterior compartment have increased levels of Ci protein. Thus patched influences wing disc patterning by decreasing Ci protein levels and inactivating hedgehog target genes in the anterior compartment.


1992 ◽  
Vol 12 (8) ◽  
pp. 3600-3608
Author(s):  
D R Dowd ◽  
R L Miesfeld

WEHI7.2 murine lymphocytes undergo apoptotic death when exposed to glucocorticoids or elevated levels of intracellular cyclic AMP (cAMP), and these pathways are initiated by the glucocorticoid receptor (GR) and protein kinase A, respectively. We report the isolation and characterization of a novel WEHI7.2 variant cell line, WR256, which was selected in a single step for growth in the presence of dexamethasone and arose at a frequency of approximately 10(-10). The defect was not GR-related, as WR256 expressed functional GR and underwent GR-dependent events associated with apoptosis, such as hormone-dependent gene transcription and inhibition of cell proliferation. Moreover, the glucocorticoid-resistant phenotype was stable in culture and did not revert after treatment with 5-azacytidine or upon stable expression of GR cDNA. In addition, WR256 did not exhibit the diminished mitochondrial activity commonly associated with apoptosis. Interestingly, WR256 was also found to be resistant to 8-bromo-cAMP and forskolin despite having normal levels of protein kinase A activity and the ability to induce cAMP-dependent transcription. We examined the steady-state transcript levels of bcl-2, a gene whose protein product acts dominantly to inhibit thymocyte apoptosis, to determine whether elevated bcl-2 expression could account for the resistant phenotype. Our data showed that bcl-2 RNA levels were similar in the two cell lines and not altered by either dexamethasone or 8-bromo-cAMP treatment. These results suggest that WR256 exhibits a "deathless" phenotype and has a unique defect in a step of the apoptotic cascade that may be common to the glucocorticoid- and cAMP-mediated cell death pathways.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244253
Author(s):  
Mohammad Shahidullah ◽  
William Stuart Wilson ◽  
Kazi Rafiq ◽  
Mahmudul Hasan Sikder ◽  
Jannatul Ferdous ◽  
...  

In order to elucidate involvement of cyclic AMP and intracellular Ca2+,[Ca2+]i, in the modulation of aqueous humour formation (AHF), we studied the effects of terbutaline, forskolin and 8-Br-cAMP in the isolated bovine eye. We also studied the interaction of cAMP on calcium signaling in cultured ciliary epithelial (CE) cells. Drug effects on AHF were measured by fluorescein dilution. Drug effects on [Ca2+]i were studied by the fura-2 fluorescence ratio technique. Terbutaline (100 nmol-100 M), forskolin (30 nM-100 M) or 8-Br-cAMP (100 nM– 10 μM), administered in the arterial perfusate produced significant reductions in AHF. The AH reducing effect of terbutaline was blocked by a selective inhibitor of protein kinase A (KT-5720). ATP (100 M) caused a rapid, transient (peak) increase in [Ca2+]i followed by a sustained plateau phase lasting more than 5 minutes. Preincubation of the cells (6 min) with terbutaline, forskolin or 8-Br-cAMP significantly reduced the peak calcium response to ATP. The sustained plateau phase of the response, on the other hand, was augmented by each of the agents. KT-5720 partially reversed the inhibitory effect of terbutaline on the peak and totally inhibited its effect on the plateau phase. These data indicate: (a) that AHF in the bovine eye can be manipulated through cyclic AMP, operating via protein kinase A, (b) that protein kinase A can affect [Ca2+]i homeostasis, (c) that calcium release from the intracellular store, not the entry, affects AHF, and (d) that interaction of [Ca2+]i with cAMP plays a role in modulating AH secretion.


Sign in / Sign up

Export Citation Format

Share Document